Have a personal or library account? Click to login
Pancreatic lipase inhibitory activity of selected pharmaceutical agents Cover

Pancreatic lipase inhibitory activity of selected pharmaceutical agents

Open Access
|Dec 2018

References

  1. 1. F. K. Winkler, Structure of human pancreatic lipase, Nature343 (1990) 771–774; https://doi.org/10.1038/343771a010.1038/343771a0
  2. 2. S. Ransac, Y. Gargouri, F. Marguet, G. Buono, C. Beglinger, P. Hildebrand, H. Lengsfeld, P. Hadváry and R. Verger, Covalent inactivation of lipases, Methods Enzymol.286 (1997) 190–231; https://doi.org/10.1016/S0076-6879(97)86012-010.1016/S0076-6879(97)86012-0
  3. 3. G. Singh, S. Suresh, B. V. Krishna and K. R. Kumar, Lipase inhibitors from plants and their medical applications, Int. J. Pharm. Pharm. Sci.7 (2015) 1–5.
  4. 4. E. Kato, M. Yama, R. Nakagomi, T. Shibata, K. Hosokawa and J. Kawabata, Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica, Bioorg. Med. Chem. Lett.22 (2012) 6410–6412; https://doi.org/10.1016/j.bmcl.2012.08.05510.1016/j.bmcl.2012.08.05522995617
  5. 5. Y. Narita, K. Iwai, T. Fukunaga and O. Nakagiri, Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil, Biosci. Biotechnol. Biochem. 76 (2012) 2329–2331; https://doi.org/10.1271/bbb.12051810.1271/bbb.12051823221697
  6. 6. E. Mentese, F. Yιlmaz, N. Karaali, S. Ülker and B. Kahveci, Rapid synthesis and lipase inhibition activity of some new benzimidazole and perimidine derivatives, Bioorg. Khim.40 (2014) 363–369; https://doi.org/10.1134/S106816201403009110.1134/S1068162014030091
  7. 7. Y. H. Jo, S. B. Kim, Q. Liu, J. W. Lee, B. Y. Hwang and M. K. Lee, Benzylated and prenylated flavonoids from the root barks of Cudrania tricuspidata with pancreatic lipase inhibitory activity, Bioorg. Med. Chem. Lett.25 (2015) 3455–3457; https://doi.org/10.1016/j.bmcl.2015.07.01710.1016/j.bmcl.2015.07.01726227773
  8. 8. S. N. Sridhar, G. Ginson, P. O. Venkataramana Reddy, M. P. Tantak, D. Kumar and A. T. Paul, Synthesis, evaluation and molecular modeling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors, Bioorg. Med. Chem. 25 (2017) 609–620; https://doi.org/10.1016/j.bmc.2016.11.03110.1016/j.bmc.2016.11.03127908755
  9. 9. A. M. Brzozowski, U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A. Patkar and L. Thim, A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature351 (1991) 491–494; https://doi.org/10.1038/351491a010.1038/351491a02046751
  10. 10. M. P. Egloff, L. Sarda, R. Verger, C. Cambillau and H. van Tilbeurgh, Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase, Protein Sci.4 (1995) 44–57; https://doi.org/10.1002/pro.556004010710.1002/pro.556004010721429707773176
  11. 11. A. Bourbon-Freie, R. E. Dub, X. Xiao and M. E. Lowe, Trp-107 and trp-253 account for the increased steady state fluorescence that accompanies the conformational change in human pancreatic triglyceride lipase induced by tetrahydrolipstatin and bile salt, J. Biol. Chem.284 (2009) 14157–14164; https://doi.org/10.1074/jbc.M90115420010.1074/jbc.M901154200268286419346257
  12. 12. V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carrièreand and J. F. Cavalier, Effects of surfactants on lipase structure, activity, and inhibition, Pharm. Res.8 (2011) 1831–1842; https://doi.org/10.1007/s11095-010-0362-910.1007/s11095-010-0362-921234659
  13. 13. P. Alam, G. Rabbani, G. Badr, B. M. Badr and R. H. Khan, The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase, Cell Biochem. Biophys. 71 (2015) 1199–1206; https://doi.org/10.1007/s12013-014-0329-210.1007/s12013-014-0329-225424356
  14. 14. E. Mateos-Diaz, S. Amara, A. Roussel, S. Longhi, C. Cambillau and F. Carrière, Probing conformational changes and interfacial recognition site of lipases with surfactants and inhibitors, Methods Enzymol.583 (2017) 279–307; https://doi.org/10.1016/bs.mie.2016.09.04010.1016/bs.mie.2016.09.04028063495
  15. 15. I. I. Hamdan, F. Afifi and M. O. Taha, In vitro alpha amylase inhibitory effect of some clinically-used drugs, Pharmazie59 (2004) 799–801.
  16. 16. Y. Bustanji, M. Mohammad Mohammad, M. Hudaib, K. Tawaha, I. M. Al-Masri, H. S. Al Khatib, A. Issa and F. Q. Alali, Screening of some medicinal plants for their pancreatic lipase inhibitory potential, Jordan J. Pharm. Sci.4 (2011) 81–88.
  17. 17. FRED (version 2.2.5) 2009. OpenEye Scientific Software (www.eyesopen.com), Santa Fe, USA.
  18. 18. S. Habtemariam, The anti-obesity potential of sigmoidin A, Pharm. Biol. 50 (2012) 1519–1522; https://doi.org/10.3109/13880209.2012.68883810.3109/13880209.2012.68883822978690
  19. 19. M. Karamać and R. Amarowicz, Inhibition of pancreatic lipase by phenolic acids-examination in vitro, Z. Naturforsch. C.51 (1996) 903–905.10.1515/znc-1996-11-12229031529
  20. 20. J. A. van Diepen, I. O. C. M. Vroegrijk, J. F. P. Berbée, S. E. Shoelson, J. A. Romijn, L. M. Havekes, P. C. N. Rensen and P. J. Voshol, Aspirin reduces hypertriglyceridemia by lowering VLDL-triglyceride production in mice fed a high-fat diet, Am. J. Physiol. Endocrinol. Metab.301 (2011) 1099–1107; https://doi.org/10.1152/ajpendo.00185.201110.1152/ajpendo.00185.2011411635321862721
  21. 21. A. Kumarand and S. Chauhan, Monte Carlo method based QSAR modeling of natural lipase inhibitors using hybrid optimal descriptors, SAR QSAR Environ. Res.28 (2017) 179–197; https://doi.org/10.1080/1062936X.2017.129372910.1080/1062936X.2017.129372928271914
  22. 22. R. Emral, O. Köseoğlulari, V. Tonyukuk, A. R. Uysal, N. Kamel and D. Corapcioğlu, The effect of short-term glycemic regulation with gliclazide and metformin on postprandial lipemia, Exp. Clin. Endocrinol. Diabetes113 (2005) 80–84; https://doi.org/10.1055/s-2004-83053610.1055/s-2004-83053615772898
  23. 23. L. S. Chupak, X. Zheng, S. Hu, Y. Huang, M. Ding, M. A. Lewis, R. S. Westphal, Y. Blat, A. McClure and R. G. Gentles, Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase, Bioorg. Med. Chem. 24 (2016) 1455–1468; https://doi.org/10.1016/j.bmc.2016.02.00610.1016/j.bmc.2016.02.00626917221
  24. 24. F. J. Janssen, H. Deng, M. P. Baggelaar, M. Allarà, T. van der Wel, H. den Dulk, A. Ligresti, A. C. van Esbroeck, R. McGuire, V. Di Marzo, H. S. Overkleeft and M. van der Stelt, Discovery of glycine sulfonamides as dual inhibitors of sn-1-diacylglycerol lipase α and α/β-hydrolase domain 6, J. Med. Chem.57 (2014) 6610–6622; https://doi.org/10.1021/jm500681z10.1021/jm500681z24988361
  25. 25. J. Kim, Y. S. Lee, C. S. Kim and J. S. Kim, Betulinic acid has an inhibitory effect on pancreatic lipase and induces adipocyte lipolysis, Phytother. Res. 26 (2012) 1103–1106; https://doi.org/10.1002/ptr.367210.1002/ptr.3672
  26. 26. Y. Bustanji, I. M. Al-Masri, M. Mohammad, M. Hudaib, K. Tawaha, H. Tarazi and H. S. Alkhatib, Pancreatic lipase inhibition activity of trilactoneterpenes of Ginkgo biloba, J. Enzyme Inhib. Med. Chem.26 (2011) 453–459; https://doi.org/10.3109/14756366.2010.52550910.3109/14756366.2010.525509
  27. 27. Y. M. Al-Hiari, V. N. Kasabri, A. K. Shakya, M. H. Alzweiri, F. U. Afifi, Y. K. Bustanji and I. M. Al-Masri, Fluoroquinolones: novel class of gastrointestinal dietary lipid digestion and absorption inhibitors, Med. Chem. Res. 23 (2014) 3336–3346; https://doi.org/10.1007/s00044-014-0913-410.1007/s00044-014-0913-4
  28. 28. P. Hadváry, W. Sidler, W. Meister, W. Vetter and H. Wolfer, The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase, J. Biol. Chem.266 (1991) 2021–2027.10.1016/S0021-9258(18)52203-1
  29. 29. C. Schouand and N. H. Heegaard, Recent applications of affinity interactions in capillary electrophoresis, Electrophoresis27 (2006) 44–59; https://doi.org/10.1002/elps.20050051610.1002/elps.200500516716365416315182
  30. 30. A. Lookene, N. Skottova and G. Olivecrona, Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat), Eur. J. Biochem. 222 (1994) 395–403; https://doi.org/10.1111/j.1432-1033.1994.tb18878.x10.1111/j.1432-1033.1994.tb18878.x8020477
  31. 31. H. Lee, S. Cao, K. E. Hevener, L. Truong, J. L. Gatuz, K. Patel, A. K. Ghosh and M. E. Johnson, Synergistic inhibitor binding to the papain-like protease of human SARS corona virus: mechanistic and inhibitor design implications, Chem. Med. Chem.8 (2013) 1361–1372; https://doi.org/10.1002/cmdc.20130013410.1002/cmdc.201300134395498623788528
  32. 32. C. W. Murray and T. L. Blundell, Structural biology in fragment-based drug design, Curr. Opin. Struct. Biol.20 (2010) 497–507; https://doi.org/10.1016/j.sbi.2010.04.00310.1016/j.sbi.2010.04.00320471246
DOI: https://doi.org/10.2478/acph-2019-0010 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 1 - 16
Accepted on: Sep 24, 2018
Published on: Dec 7, 2018
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2018 Imad I. Hamdan, Violet N. Kasabri, Yusuf M. Al-Hiari, Dina El-Sabawi, Hiba Zalloum, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.