Have a personal or library account? Click to login
Analysis of diclofenac in water samples using in situ derivatization-vortex-assisted liquid-liquid microextraction with gas chromatography-mass spectrometry Cover

Analysis of diclofenac in water samples using in situ derivatization-vortex-assisted liquid-liquid microextraction with gas chromatography-mass spectrometry

Open Access
|Jul 2018

References

  1. 1. N. A. Alygizakis, P. Gago-Ferrero, V. L. Borova, A. Pavlidou, I. Hatzianestis and N. S. Thomaidis, Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater, Sci. Total Environ. 541 (2016) 1097–1105; https://doi.org/10.1016/j.scitotenv.2015.09.14510.1016/j.scitotenv.2015.09.145
  2. 2. J. Martín, M. D. Camacho-Muñoz, J. L. Santos, I. Aparicio and E. Alonso, Distribution and temporal evolution of pharmaceutically active compounds alongside sewage sludge treatment. Risk assessment of sludge application onto soils, J. Environ. Manag. 102 (2012) 18–25; https://doi.org/10.1016/j.jenvman.2012.02.02010.1016/j.jenvman.2012.02.020
  3. 3. A. Tauxe-Wuersch, L. F. de Alencastro, D. Grandjean and J. Tarradellas, Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment, Water Res. 39 (2005) 1761–1772; https://doi.org/10.1016/j.watres.2005.03.00310.1016/j.watres.2005.03.003
  4. 4. T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett. 131 (2002) 5–17; https://doi.org/10.1016/S0378-4274(02)00041-310.1016/S0378-4274(02)00041-3
  5. 5. T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers, Water Res. 32 (1998) 3245–3260; https://doi.org/10.1016/S0043-1354(98)00099-210.1016/S0043-1354(98)00099-2
  6. 6. P. M. Thomas and G. D. Foster, Determination of nonsteroidal anti-inflammatory drugs, caffeine, and triclosan in wastewater by gas chromatography-mass spectrometry, J. Environ. Sci. Health A39 (2004) 1969–1978; https://doi.org/10.1080/03601234.2015.97560710.1080/03601234.2015.97560725587780
  7. 7. M. J. Martínez Bueno, M. J. Gomez, S. Herrera, M. D. Hernando, A. Agüera and A. R. Fernández-Alba, Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring, Environ. Pollut. 164 (2012) 267–273; https://doi.org/10.1016/j.envpol.2012.01.03810.1016/j.envpol.2012.01.03822387188
  8. 8. Q. Bu, B. Wang, J. Huang, S. Deng and G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: A review, J. Hazard. Mater. 262 (2013) 189–211; https://doi.org/10.1016/j.jhazmat.2013.08.04010.1016/j.jhazmat.2013.08.04024036145
  9. 9. T. E. Félix-Cañedo, J. C. Durán-Álvarez and B. Jiménez-Cisneros, The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources, Sci. Total Environ. 454–455 (2013) 109–118; https://doi.org/10.1016/j.scitotenv.2013.02.08810.1016/j.scitotenv.2013.02.08823542484
  10. 10. U. Jux, R. M. Baginski, H. G. Arnold, M. Krönke and P. N. Seng, Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) and surroundings, Int. J. Hygiene Environ. Health205 (2002) 393–398; https://doi.org/10.1078/1438-4639-0016610.1078/1438-4639-0016612173539
  11. 11. R. López-Serna, A. Jurado, E. Vázques-Sune, J. Carrera, M. Petrovic and D. Barceló, Occurrence of 95 pharmaceuticals and transformation products in urban ground waters underlying the metropolis of Barcelona, Spain, Environ. Pollut. 174 (2013) 305–315; https://doi.org/10.1016/j.envpol.2012.11.02210.1016/j.envpol.2012.11.02223302545
  12. 12. N. Vieno and M. Sillanpää, Fate of diclofenac in municipal wastewater treatment plant-A review, Environ. Int.69 (2014) 28–39; https://doi.org/10.1016/j.envint.2014.03.02110.1016/j.envint.2014.03.02124791707
  13. 13. M. Česen and E. Heath, Disk-based solid phase extraction for the determination of diclofenac and steroidal estrogens E1, E2 and EE2 listed in the WFD watch list by GC-MS, Sci. Total Environ. 590-591 (2017) 832–837; https://doi.org/10.1016/j.scitotenv.2017.02.22210.1016/j.scitotenv.2017.02.22228284637
  14. 14. A. Sarafraz-Yazdi and A. Amiri, Liquid-phase microextraction, Trends Anal. Chem. 29 (2010) 1–14; https://doi.org/10.1016/j.trac.2009.10.00310.1016/j.trac.2009.10.003
  15. 15. M. D. Gil García, F. Cañada Cañada, M. J. Culzoni, L. Vera Candioti, G. G. Siano, H. C. Goicoechea and M. Martínez Galera, Chemometric tools improving the determination of anti-inflammatory and antiepileptic drugs in river and wastewater by solid-phase microextraction and liquid chromatography diode array detection, J. Chromatogr. A1216 (2009) 5489–5496; https://doi.org/10.1016/j.chroma.2009.05.07310.1016/j.chroma.2009.05.07319535087
  16. 16. P. L. Kole, J. Millership and J. C. McElnay, Stir bar sorptive extraction of diclofenac from liquid formulations: A proof of concept study, J. Pharm. Biomed. Anal.54 (2011) 701–710; https://doi.org/10.1016/j.jpba.2010.10.02510.1016/j.jpba.2010.10.02521095087
  17. 17. M. R. Payána, M. Á. B. López, R. Fernández-Torres, M. C. Mochóna and J. L. G. Ariza, Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters, Talanta82 (2010) 854–858; https://doi.org/10.1016/j.talanta.2010.05.02210.1016/j.talanta.2010.05.02220602981
  18. 18. C. H. Lee, Y. Shin, M. W. Nam, K. M. Jeong and J. Lee, A new analytical method to determine non-steroidal anti-inflammatory drugs in surface water using in situ derivatization combined with ultrasound-assisted emulsification microextraction followed by gas chromatography-mass spectrometry, Talanta129 (2014) 552–559; https://doi.org/10.1016/j.talanta.2014.06.02710.1016/j.talanta.2014.06.02725127632
  19. 19. D. Ge and H. K. Lee, Zeolite imidazolate frameworks 8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water samples, J. Chromatogr. A1257 (2012) 19–24; https://doi.org/10.1016/j.chroma.2012.08.03210.1016/j.chroma.2012.08.03222926055
  20. 20. A. Sarafraz-Yazdi, H. Assadi, Z. Eshaghi and N. M. Danesh, Pre-concentration of non-steroidal anti-inflammatory drugs in water using dispersive liquid-liquid and single-drop microextraction with high-performance liquid chromatography, J. Sep. Sci.35 (2012) 2476–2483; https://doi.org/10.1002/jssc.20110109910.1002/jssc.20110109922997034
  21. 21. W. Y. Chang, C. Y. Wang, J. L. Jan, Y. S. Lo and C. H. Wu, Vortex-assisted liquid-liquid microextraction coupled with derivatization for the fluorometric determination of aliphatic amines, J. Chromatogr. A1248 (2012) 41–47; https://doi.org/10.1016/j.chroma.2012.05.09410.1016/j.chroma.2012.05.09422727326
  22. 22. U. S. Environmental Protection Agency, EPA Method 3535A (SW-846), Solid Phase Extraction (SPE), Revision 1, US EPA, Washington (DC), February 2007; https://www.epa.gov/sites/production/files/2015-12/documents/3535a.pdf; last access February 22, 2018
  23. 23. S. Ozcan, A. Tor and M. E. Aydin, Application of ultrasound-assisted emulsification-micro-extraction for the analysis of organochlorine pesticides in waters, Water Res.43 (2009) 4269–4277; https://doi.org/10.1016/j.watres.2009.06.02410.1016/j.watres.2009.06.02419577269
  24. 24. J. Antony and R. K. Roy, Improving the process quality using statistical design of experiments: a case study, Qual. Assur. 6 (1999) 87–95; https://doi.org/10.1080/10529419927788810.1080/10529419927788810386331
  25. 25. ISO/IEC 17025:2005 Section 5.4., Test and Calibration Methods and Method Validation, International Organization for Standardization, Geneva 2005, https://www.iso.org/obp/ui/#iso:std:iso-iec:17025:ed-2:v1:en; last access February 22, 2018
  26. 26. L. H. Keith, W. Crummett, J. Deegan, R. A. Libby, J. K. Taylor and G. Wentler, Principles of environmental analysis, Anal. Chem. 55 (1983) 2210–2218; https://doi.org/10.1021/ac00264a00310.1021/ac00264a003
  27. 27. Z. Yu, S. Peldszus and P. M. Huck, Optimizing gas chromatographic–mass spectrometric analysis of selected pharmaceuticals and endocrine-disrupting substances in water using factorial experimental design, J. Chromatogr. A1148 (2007) 65–77; https://doi.org/10.1016/j.chroma.2007.02.04710.1016/j.chroma.2007.02.04717391686
  28. 28. A. A. Asgharinezhad, N. Mollazadeh, H. Ebrahimzadeh, F. Mirbabaei and N. Shekari, Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water, J. Chromatogr. A.1338 (2014) 1–8; https://doi.org/10.1016/j.chroma.2014.02.02710.1016/j.chroma.2014.02.02724636757
  29. 29. U. Kotowska, J. Kapelewska and J. Sturgulewska, Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification-microextraction followed by GC-MS, Environ. Sci. Pollut. Res.21 (2014) 660–673; https://doi.org/10.1007/s11356-013-1904-610.1007/s11356-013-1904-6387742723818073
  30. 30. N. N. Naing, S. F. Yau Li and H. K. Lee, Graphene oxide-based dispersive solid-phase extraction combined with in situ derivatization and gas chromatography–mass spectrometry for the determination of acidic pharmaceuticals in water, J. Chromatogr. A1426 (2015) 69–76; https://doi.org/10.1016/j.chroma.2015.11.07010.1016/j.chroma.2015.11.07026684593
  31. 31. A. Zgoła-Grześkowiak, Application of DLLME to isolation and concentration of non-steroidal anti-inflammatory drugs in environmental water samples, Chromatographia72 (2010) 671–678; https://doi.org/10.1365/s10337-010-1702-y10.1365/s10337-010-1702-y
  32. 32. L. Xu, M. Jiang and G. Li, Injection port derivatization following sonication-assisted ion-pair liquid–liquid extraction of nonsteroidal anti-inflammatory drugs, Anal. Chim. Acta666 (2010) 45–50; https://doi.org/10.1016/j.aca.2010.03.05210.1016/j.aca.2010.03.05220433963
  33. 33. G. G. Noche, M. E. Laespada, J. L. P. Pavón, B. M. Cordero and S. M. Lorenzo, In situ aqueous derivatization and determination of non-steroidal anti-inflammatory drugs by salting-out-assisted liquid-liquid extraction and gas chromatography-mass spectrometry, J. Chromatogr. A1218 (2011) 6240–6247; https://doi.org/10.1016/j.chroma.2011.06.11210.1016/j.chroma.2011.06.11221820666
DOI: https://doi.org/10.2478/acph-2018-0024 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 313 - 324
Accepted on: Mar 9, 2018
Published on: Jul 4, 2018
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2018 Senar Aydin, Mehmet Emin Aydin, Fatma Beduk, Arzu Tekinay, Havva Kilic, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.