Have a personal or library account? Click to login
Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells Cover

Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells

Open Access
|Jul 2018

References

  1. 1. P. Sharma, Cinnamic acid derivatives: A new chapter of various pharmacological activities, J. Chem. Pharm. Res.3 (2011) 403–423.
  2. 2. J. D. Guzman, Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity, Molecules19 (2014) 292–349; https://doi.org/10.3390/molecules19121929210.3390/molecules191219292627180025429559
  3. 3. R. Lone, R. Shuab and K. K. Koul, Role of cinnamate and cinnamate derivatives in pharmacology, Glob. J. Pharmacol.8 (2014) 328–335; https://doi.org/10.5829/idosi.gjp.2014.8.3.83132
  4. 4. M. Sova, Antioxidant and antimicrobial activities of cinnamic acid derivatives, Mini Rev. Med. Chem.12 (2012) 749–767; https://doi.org/10.2174/13895571280126479210.2174/13895571280126479222512578
  5. 5. M. K. Lee, Y. B. Park, S. S. Moon, S. H. Bok, D. J. Kim, T. Y. Ha, T. S. Jeong, K. S. Jeong and M. S. Choi, Hypocholesterolemic and antioxidant properties of 3-(4-hydroxyl)propanoic acid derivatives in high-cholesterol fed rats, Chem.-Biol. Interact.170 (2007) 9–19; https://doi.org/10.1016/j.cbi.2007.06.03710.1016/j.cbi.2007.06.03717662703
  6. 6. J. Zhang, J. Yang, X. Chang, C. Zhang, H. Zhou and M. Liu, Ozagrel for acute ischemic stroke: a meta-analysis of data from randomized controlled trials, Neurol. Res.34 (2012) 346–353; https://doi.org/10.1179/1743132812Y.000000002210.1179/1743132812Y.000000002222643078
  7. 7. J. Kanaani and H Ginsburg, Effects of cinnamic acid derivatives on in vitro growth of Plasmodium falciparum and on the permeability of the membrane of malaria-infected erythrocytes, Antimicrob. Agents Chemother.36 (1992) 1102–1108.10.1128/AAC.36.5.11021888431510401
  8. 8. B. Pérez, C. Teixeira, A. S. Gomes, I. S. Albuquerque, J. Gut, P. J. Rosenthal, M. Prudêncio and P. Gomes, In vitro efficiency of 9-(N-cinnamoylbutyl)aminoacridines against blood- and liver-stage malaria parasites, Bioorg. Med. Chem. Lett.23 (2013) 610–613; https://doi.org/10.1016/j.bmcl.2012.12.03210.1016/j.bmcl.2012.12.03223290049
  9. 9. B. C. Pérez, C. Teixeira, M. Figueiras, J. Gut, P. J. Rosenthal, J. R. B. Gomes and P. Gomes, Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: Towards the development of potential dual action antimalarials, Eur. J. Med. Chem.54 (2012) 887–899; https://doi.org/10.1016/j.ejmech.2012.05.02210.1016/j.ejmech.2012.05.02222683112
  10. 10. B. C. Pérez, I. Fernandes, N. Mateus, C. Teixeira and P. Gomes, Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues, Bioorg. Med. Chem. Lett.23 (2013) 6769–6772; https://doi.org/10.1016/j.bmcl.2013.10.02510.1016/j.bmcl.2013.10.02524184076
  11. 11. K. Frenkel, H. Wei, R. Bhimani, J. Ye, J. A. Zadunaisky, M.-T. Huang, T. Ferraro, A. H. Conney and D. Grunberger, Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester, Cancer Res.53 (1993) 1255–1261.
  12. 12. L. Liu,W. R. Hudgins, S. Shack, M. Q. Yin and D. Samid, Cinnamic acid: a natural product with potential use in cancer intervention, Int. J. Cancer62 (1995) 345–350.10.1002/ijc.2910620319
  13. 13. S. Mishima, Y. Ono, Y. Araki, Y. Akao and Y. Nozawa, Two related cinnamic acid derivatives from Brazilian honey bee propolis, baccharin and drupanin, induce growth inhibition in allografted sarcoma S-180 in mice, Biol. Pharm. Bull.28 (2005) 1025–1030; https://doi.org/10.1248/bpb.28.102510.1248/bpb.28.102515930739
  14. 14. Y. Qian, H.-J. Zhang, H. Zhang, C. Xu, J. Zhao and H.-L. Zhu, Synthesis, molecular modeling, and biological evaluation of cinnamic acid metronidazole ester derivatives as novel anticancer agents, Bioorg. Med. Chem.18(2010) 4991–4996; https://doi.org/10.1016/j.bmc.2010.06.00310.1016/j.bmc.2010.06.00320594859
  15. 15. J. Dai and J. M. Russell, Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties, Molecules15 (2010) 7313–7352; https://doi.org/10.3390/molecules1510731310.3390/molecules15107313
  16. 16. X.-H. Yang, Q. Wen, T.-T. Zhao, J. Sun, X. Li, M. Xing, X. Lu and H.-L. Zhu, Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents, Bioorg. Med. Chem.20 (2012) 1181–1187; https://doi.org/10.1016/j.bmc.2011.12.05710.1016/j.bmc.2011.12.057
  17. 17. D. P. Bezerra, C. Pessoa, M. O. de Moraes, N. Saker-Neto, E. R. Silveira and L. v. Costa-Lotufo, Overview of the therapeutic potential of piplartine (piperlongumine), Eur. J. Pharm. Sci.48 (2013) 453–463; https://doi.org/10.1016/j.ejps.2012.12.00310.1016/j.ejps.2012.12.003
  18. 18. C.-C. Xu, T. Deng, M.-L. Fan, W.-B. Lv, J.-H. Liu and B.-Y. Yu, Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives, Eur. J. Med. Chem.107 (2016) 192–203; https://doi.org/10.1016/j.ejmech.2015.11.00310.1016/j.ejmech.2015.11.003
  19. 19. P. Su, Y. Shi, J. Wang, X. Shen and J. Zhang, Anticancer agents derived from natural cinnamic acids, Anticancer Agents Med Chem.15 (2015) 980–987; https://doi.org/10.2174/187152061566615013011112010.2174/1871520615666150130111120
  20. 20. P. De, M. Baltas and F. Bedos-Belval, Cinnamic acid derivatives as anticancer agents - a review, Curr. Med. Chem.18 (2011) 1672–1703; https://doi.org/10.2174/09298671179547134710.2174/092986711795471347
  21. 21. J. A. Plumb, P. W. Finn, R. J. Williams, M. J. Bandara, M. R. Romero, C. J. Watkins, N. B. La Thangue and R. Brown, Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101, Mol. Cancer Ther.2 (2003) 721–728.10.1016/S1359-6349(04)80066-1
  22. 22. P. Revill, N. Mealy, N. Serradell, J. Bolos and E. Rosa, Panobinistat, Drugs Fut.32 (2007) 315–322; https://doi.org/10.1358/dof.2007.032.04.109447610.1358/dof.2007.032.04.1094476
  23. 23. K. Pavić, I. Perković, P. Gilja, F. Kozlina, K. Ester, M. Kralj, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of amide and acylsemicarbazide type, Molecules21 (2016) 1629–1653; https://doi.org/10.3390/molecules2112162910.3390/molecules21121629
  24. 24. K. Pavić, I. Perković, Š. Pospíšilová, M. Machado, D. Fonthinha, M. Prudêncio, J. Jampilek. A. Coffey, L. Endersen, H. Rimac and B. Zorc, Primaquine hybrids as promising antimycobacterial and antimalarial agents, Eur. J. Med. Chem.143 (2018) 769–779; https://doi.org/10.1016/j.ejmech.2017.11.08310.1016/j.ejmech.2017.11.083
  25. 25. Z. Herceg and Z. Q. Wang, Functions of poly (ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death, Mutat. Res.477 (2001) 97–110; https://doi.org/10.1016/S0027-5107(01)00111-710.1016/S0027-5107(01)00111-7
  26. 26. I. Perković, M. Antunović, I. Marijanović, K. Pavić, K. Ester, M. Kralj, J. Vlainić, I. Kosalec, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Novel urea and bis-urea primaquine derivatives with hydroxyphenyl and halogenphenyl substituents: Synthesis and biological evaluation, Eur. J. Med. Chem.124 (2016) 622–636; https://doi.org/10.1016/j.ejmech.2016.08.02110.1016/j.ejmech.2016.08.02127614409
  27. 27. S. Hector and J. H. Prehn, Apoptosis signalling proteins as prognostic biomarkers in colorectal cancer: A review, BBA-Rev. Cancer1795 (2009) 117–129; https://doi.org/10.1016/j.bbcan.2008.12.00210.1016/j.bbcan.2008.12.00219167459
  28. 28. P. Mabeta and M. S. Pepper, Inhibition of hemangioma development in a syngeneic mouse model correlates with Bcl-2 suppression and the inhibition of Akt kinase activity, Angiogenesis15 (2012) 131–139; https://doi.org/10.1007/s10456-011-9248-710.1007/s10456-011-9248-722198238
  29. 29. P. Mabeta, PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation, Acta Pharm.66 (2016) 399–410; https://doi.org/10.1515/acph-2016-003110.1515/acph-2016-003127383888
  30. 30. I. Ojima, D. Awasthi, L. Wei and K. Haranahalli, Strategic incorporation of fluorine in the drug discovery of new-generation antitubercular agents targeting bacterial cell division protein FtsZ, J. Fluorine Chem.196 (2017) 44–56; https://doi.org/10.1016/j.jfluchem.2016.07.02010.1016/j.jfluchem.2016.07.020544592928555087
  31. 31. H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander and M. Stahl, Fluorine in medicinal chemistry, ChemBioChem5 (2004) 637–643; https://doi.org/10.1002/cbic.20030102310.1002/cbic.20030102315122635
DOI: https://doi.org/10.2478/acph-2018-0021 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 337 - 348
Accepted on: Jan 29, 2018
|
Published on: Jul 4, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2018 Peace Mabeta, Kristina Pavić, Branka Zorc, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.