Have a personal or library account? Click to login
Effective anti-adhesives of uropathogenic Escherichia coli Cover

Effective anti-adhesives of uropathogenic Escherichia coli

Open Access
|Feb 2018

References

  1. 1. B. Foxman, Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden, Infect. Dis. Clin. North Am. 28 (2014) 1-13; https://doi.org/10.1016/j.idc.2013.09.00310.1016/j.idc.2013.09.00324484571
  2. 2. K. Gupta, T. M. Hooton and W. E. Stamm, Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections, Ann. Intern. Med. 135 (2001) 41-50; https://doi.org/10.7326/0003-4819-135-1-200107030-0001210.7326/0003-4819-135-1-200107030-0001211434731
  3. 3. M. G. Blango and M. A. Mulvey, Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics, Antimicrob. Agents Chemother. 54 (2010) 1855-1863; https://doi.org/10.1128/AAC.00014-1010.1128/AAC.00014-10286363820231390
  4. 4. C. Aypak, A. Altunsoy and N. Düzgün, Empiric antibiotic therapy in acute uncomplicated urinary tract infections and fluoroquinolone resistance: A prospective observational study, Ann. Clin. Microbiol. Antimicrob. 8 (2009) Article ID 27; https://doi.org/10.1186/1476-0711-8-2710.1186/1476-0711-8-27277051519852849
  5. 5. J. A. Karlowsky, D. J. Hoban, M. R. Decorby, N. M. Laing and G. G. Zhanel, Fluoroquinolone-resistant urinary isolates of Escherichia coli from outpatients are frequently multidrug resistant: Results from the North American urinary tract infection collaborative alliance-quinolone resistance study, Antimicrob. Agents Chemother. 50 (2006) 2251-2254; https://doi.org/10.1128/AAC.00123-0610.1128/AAC.00123-06147913216723598
  6. 6. D. Scholes, T. M. Hooton, P. L. Roberts, K. Gupta, A. E. Stapleton and W. E. Stamm, Risk factors with acute pyelonephritis in healthy women, Ann. Intern. Med. 142 (2005) 20-27; https://doi.org/10.7326/0003-4819-142-1-200501040-0000810.7326/0003-4819-142-1-200501040-00008372260515630106
  7. 7. T. J. Hannan, I. U. Mysorekar, C. S. Hung, M. L. Isaacson-Schmid and S. J. Hultgren, Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection, PLoS Pathog. 6 (2010) e1001042; https://doi.org/10.1371/journal.ppat.100104210.1371/journal.ppat.1001042293032120811584
  8. 8. D. J. Schwartz, S. L. Chen, S. J. Hultgren and P. C. Seed, Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection, Infect. Immun. 79 (2011) 4250-4259; https://doi.org/10.1128/IAI.05339-1110.1128/IAI.05339-11318725621807904
  9. 9. L. Nicolle, Complicated urinary tract infection in adults, Can. J. Infect. Dis. Med. Microbiol. 16 (2005) 349-360; https://doi.org/10.1155/2005/38576810.1155/2005/385768209499718159518
  10. 10. T. J. Wiles, R. R. Kulesus and M. A. Mulvey, Origins and virulence mechanisms of uropathogenic Escherichia coli, Exp. Mol. Pathol. 85 (2008) 11-19; https://doi.org/10.1016/j.yexmp.2008.03.00710.1016/j.yexmp.2008.03.007259513518482721
  11. 11. R. J. Doyle, Contribution of the hydrophobic effect to microbial infection, Microb. Infect. 2 (2000) 391-400; https://doi.org/10.1016/S1286-4579(00)00328-210.1016/S1286-4579(00)00328-2
  12. 12. J. W. Costerton, P. S. Stewart and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science 284 (1999) 1318-1322; https://doi.org/10.1126/science.284.5418.131810.1126/science.284.5418.131810334980
  13. 13. H. Connell, W. Agace, P. Klemm, M. Schembri, S. Marild and C. Svanbord, Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract, Proc. Natl. Acad. Sci. USA 93 (1996) 9827-9832.10.1073/pnas.93.18.9827385148790416
  14. 14. A. J. Lewis, A. C. Richards and M. A. Mulvey, Invasion of host cells and tissues by uropathogenic bacteria, Microb. Spectr. 4 (2016) UTI-0026-2016 (29 pages); https://doi.org/10.1128/microbiolspec.UTI-0026-201610.1128/microbiolspec.UTI-0026-2016524446628087946
  15. 15. M. A. Mulvey, Y. S. Lopez-Boado, C. L. Wilson, R. Roth, W. C. Parks, J. Heuser and S. J. Hultgren, Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli, Science 282 (1998) 1494-1497; https://doi.org/10.1126/science.282.5393.149410.1126/science.282.5393.14949822381
  16. 16. J. J. Martinez, M. A. Mulvey, J. D. Schilling, J. S. Pinkner and S. J. Hultgren, Type1 pilus-mediated bacterial invasion of bladder epithelial cells, EMBO J. 19 (2000) 2803-2812; https://doi.org/10.1093/emboj/19.12.280310.1093/emboj/19.12.280320335510856226
  17. 17. M. Hartmann and T. K. Lindhorst, The bacterial lectin FimH, a target for drug discovery - carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion, Eur. J. Org. Chem. 2011 (2011) 3583-3609; https://doi.org/10.1002/ejoc.20110040710.1002/ejoc.201100407
  18. 18. G. G. Anderson, J. J. Palermo, J. D. Schilling, R. Roth, J. Heuser and S. J. Hultgren, Intracellular bacterial biofilm-like pods in urinary tract infections, Science 301 (2003) 105-107; https://doi.org/10.1126/science.108455010.1126/science.108455012843396
  19. 19. X. R. Wu, T. T. Sun and J. J. Medina, In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: Relation to urinary tract infections, Proc. Natl. Acad. Sci. USA 93 (1996) 9630-9635.10.1073/pnas.93.18.9630384798790381
  20. 20. J. A. Snyder, A. L. Lloyd, C. V. Lockatell, D. E. Johnson and H. L. Mobley, Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection, Infect. Immun. 74 (2006) 1387-1393; https://doi.org/10.1128/IAI.74.2.1387-1393.200610.1128/IAI.74.2.1387-1393.2006136034216428790
  21. 21. D. S. Eto, T. A. Jones, J. L. Sundsbak and M. M. Mulvey, Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli, PLoS Pathog. 3 (2007) e100; https://doi.org/10.1371/journal.ppat.003010010.1371/journal.ppat.0030100
  22. 22. J. Song, B. L. Bishop, G. Li, R. Grady, A. Stapleton and S. N. Abraham, TLR4-mediated expulsion of bacteria from infected bladder epithelial cells, Proc. Natl. Acad. Sci. USA 106 (2009) 14966-14971; https://doi.org/10.1073/pnas.090052710610.1073/pnas.0900527106
  23. 23. P. Thumbikat, R. E. Berry, G. Zhou, B. K. Billips, R. E. Yaggie, T. Zaichuk, T. T. Sun, A. J. Schaeffer and D. J. Klumpp, Bacteria-induced uroplakin signaling mediates bladder response to infection, PLoS Pathog. 5 (2009) e1000415; https://doi.org/10.1371/journal.ppat.100041510.1371/journal.ppat.1000415
  24. 24. L. S. Ronald, O. Yakovenko, N. Yazvenko, S. Chattopadhyay, P. Aprikian, W. E. Thomas and E. V. Sokurenko, Adaptive mutations in the signal peptide of the type1fimbrial adhesin of uropathogenic Escherichia coli, Proc. Natl. Acad. Sci. USA 105 (2008) 10937-10942; https://doi.org/10.1073/pnas.080315810510.1073/pnas.0803158105
  25. 25. S. L. Chen, C. S. Hung, J. S. Pinkner, J. N. Walker, C. K. Cusumano, Z. Li, J. Bouckaert, J. I. Gordon and S. L. Hultgren. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding, Proc. Natl. Acad. Sci. USA 106 (2009) 22439-22444; https://doi.org/10.1073/pnas.090217910610.1073/pnas.0902179106
  26. 26. D. Choudhury, A. Thompson, V. Stojanoff, S. Langermann, J. Pinkner, S. J. Hultgren and S. D. Knight, X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli, Science 285 (1999) 1061-1066; https://doi.org/10.1126/science.285.5430.106110.1126/science.285.5430.1061
  27. 27. C. S. Hung, J. Bouckaert, D. Hung, J. Pinkner, C. Widberg, A. DeFusco, C. G. Auguste, R. Strouse, S. Langermann, G. Waksman and S. J. Hultgren, Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection, Mol. Microbiol. 44 (2002) 903-915; https://doi.org/10.1046/j.1365-2958.2002.02915.x10.1046/j.1365-2958.2002.02915.x
  28. 28. J. Bouckaert, J. Berglund, M. Schembri, E. De Genst, L. Cools, M. Wuhrer, C. S. Hung, J. Pinkner, R. Slättegård, A. Zavialov, D. Choudhury, S. Langermann, S. J. Hultgren, L. Wyns, P. Klemm, S. Oscarson, S. D. Knight and H. De Greve, Receptor binding studies disclose a novel class of highaffinity inhibitors of the Escherichia coli FimH adhesin, Mol. Microbiol. 55 (2005) 441-455; https://doi.org/10.1111/j.1365-2958.2004.04415.x10.1111/j.1365-2958.2004.04415.x
  29. 29. S. J. Hultgren, F. Lindberg, G. Magnusson, J. Kihlbergt, J. M. Tennent and S. Normark, The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus, Proc. Nat. Acad. Sci. USA 86 (1989) 4357-4361.10.1073/pnas.86.12.4357
  30. 30. F. K. de Graaf and F. R. Mooi, The fimbrial adhesins of Escherichia coli, Adv. Microb. Physiol. 28 (1986) 65-143.10.1016/S0065-2911(08)60237-4
  31. 31. G. Bergsten, B. Wullt and C. Svanborg, Echerichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract, Int. J. Med. Microbiol. 295 (2005) 487-502; https://doi.org/10.1016/j.ijmm.2005.07.00810.1016/j.ijmm.2005.07.008
  32. 32. K. W. Dodson, J. S. Pinkner, T. Rose, G. Magnusson, S. J. Hultgren and G. Waksman, Structural basis of the interaction of the pyelonephritic E. coli adheson of its human kidney receptor, Cell 105 (2001) 733-743; https://doi.org/10.1016/S0092-8674(01)00388-910.1016/S0092-8674(01)00388-9
  33. 33. J. Bien, O. Sokolova and P. Bozko, Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage, Int. J. Nephrol. 2012 (2012) Article ID 681473; https://doi.org/10.1155/2012/68147310.1155/2012/681473331227922506110
  34. 34. U. Dobrindt, G. Blum-Oehler, T. Hartsch, G. Gottschalk, E. Z. Ron, R. Fünfstück and J. Hacker, S-fimbria-encoding determinant sfa(I) is located on pathogenicity island III(536) of uropathogenic Escherichia coli strain 536, Infect. Immun. 69 (2001) 4248-4256; https://doi.org/10.1128/IAI.69.7.4248-4256.200110.1128/IAI.69.7.4248-4256.20019849411401961
  35. 35. T. K. Korhonen, V. Väisänen-Rhen, M. Rhen, A. Pere, J. Parkkinen and J. Finne, Escherichia coli fimbriae recognizing sialyl galactosides, J. Bacteriol. 159 (1984) 762-766.10.1128/jb.159.2.762-766.19842157116146600
  36. 36. A. S. Khan, I. Mühldorfer, V. Demuth, U. Wallner, T. K. Korhonen and J. Hacker, Functional analysis of the minor subunits of S fimbrial adhesion (SfaI) in pathogenic Escherichia coli, Mol. Gen. Genet. 263 (2000) 96-105; https://doi.org/10.1007/PL0000868010.1007/PL0000868010732678
  37. 37. M. Castelain, S. Ehlers, J. Klinth, S. Lindberg, M. Andersson, B. E. Uhlin and O. Axner, Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers, Eur. Biophys. J. 40 ( 2011) 3 05-316; https://doi.org/10.1007/s00249-010-0648-110.1007/s00249-010-0648-121161524
  38. 38. F. Backhed, B. Alsen, N. Roche, J. Angstrom, A. von Euler, M. E. Breimer, B. Westerlund-Wikstrom, S. Teneberg and A. Richter-Dahlfors, Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation, J. Biol. Chem. 227 (2002) 18198-18205; https://doi.org/10.1074/jbc.M11164020010.1074/jbc.M11164020011877427
  39. 39. A. S. Khan, B. Kniep, T. A. Oelschlaeger, I. Van Die, T. Korhonen and J. Hacker, Receptor structure for F1C fimbriae of uropathogenic Escherichia coli, Infect. Immun. 68 (2000) 3541-3547; https://doi.org/10.1128/IAI.68.6.3541-3547.200010.1128/IAI.68.6.3541-3547.20009764010816509
  40. 40. N. Riegman, H. Hoschützky, I. van Die, W. Hoekstra, K. Jann and H. Bergmans, Immunocytochemical analysis of P-fimbrial structure: localization of minor subunits and the influence of the minor subunit FsoE on the biogenesis of the adhesin, Mol. Microbiol. 4 (1990) 1193-1198; https://doi.org/10.1111/j.1365-2958.1990.tb00694.x10.1111/j.1365-2958.1990.tb00694.x1978223
  41. 41. E. M. Antão, L. H. Wieler and C. Ewers, Adhesive threads of extraintestinal pathogenic Escherichia coli, Gut Pathog. 1 (2009) Article ID 22; https://doi.org/10.1186/1757-4749-1-2210.1186/1757-4749-1-22
  42. 42. T. K. Lindhorst, C. Kieburg and U. Krallmann-Wenzel, Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary alpha-mannosyl clusters: the effect of multivalency, Glycoconjugate J. 15 (1998) 605-613; https://doi.org/10.1023/A:100692002764110.1023/A:1006920027641
  43. 43. T. K. Lindhorst, S. Kötter, U. Krallmann-Wenzel and S. Ehlers, Trivalent α-d-mannoside clusters as inhibitors of type-1 fimbriae-mediated adhesion of Escherichia coli: structural variation and biotinylation, J. Chem. Soc. Perkin Trans. 1 8 (2001) 823-831; https://doi.org/10.1039/B009786L10.1039/b009786l
  44. 44. C. Heidecke and T. K. Lindhorst, Iterative synthesis of spacered glycodendrons as oligomannoside mimetics and evaluation of their antiadhesive properties, Chem. Eur. J. 13 (2007) 9056-9067; https://doi.org/10.1002/chem.20070078710.1002/chem.200700787
  45. 45. M. Touaibia, A. Wellens, T. C. Shiao, Q. Wang, S. Sirois, J. Bouckaert and R. Roy, Mannosylated G(0) dendrimers with nanomolar affinities to Escherichia coli FimH, ChemMedChem 2 (2007) 1190-1201; https://doi.org/10.1002/cmdc.20070006310.1002/cmdc.200700063
  46. 46. O. Schwardt, S. Rabbani, M. Hartmann, D. Abgottspon, M. Wittwer, S. Kleeb, A. Zalewski, M. Smieško, B. Cutting and B. Ernst, Design, synthesis and biological evaluation of mannosyl triazoles as FimH antagonists, Bioorg. Med. Chem. 19 (2011) 6454-6473; https://doi.org/10.1016/j.bmc.2011.08.05710.1016/j.bmc.2011.08.057
  47. 47. N. Nagahori, R. T. Lee, S. I. Nishimura, D. Pagé, R. Roy and Y. C. Lee, Inhibition of adhesion of type 1 fimbriated Escherichia coli to highly mannosylated ligands, ChemBioChem 3 (2002) 836-844; https://doi.org/10.1002/1439-7633(20020902)3:9<;836::AID-CBIC836>3.0.CO;2-210.1002/1439-7633(20020902)3:9<;836::AID-CBIC836>3.0.CO;2-2
  48. 48. M. Dubber, O. Sperling and T. K. Lindhorst, Oligomannoside mimetics by glycosylation of ‘octopus glycosides’ and their investigation as inhibitors of type 1 fimbriae-mediated adhesion of Escherichia coli, Org. Biomol. Chem. 4 (2006) 3901-3912; https://doi.org/10.1039/B610741A10.1039/B610741A
  49. 49. Z. Han, J. S. Pinkner, B. Ford, R. Obermann, W. Nolan S. A Wildman, D. Hobbs, T. Ellenberger, K. Cusumano, S. J. Hultgren and J. W. Janetka, Structure-based drug design and optimization of mannoside bacterial FimH antagonists, J. Med. Chem. 53 (2010) 4779-4792; https://doi.org/10.1021/jm100438s10.1021/jm100438s
  50. 50. A. Wellens, C. Garofalo, H. Nguyen, N. VanGerven, R. Slättegård, J. P. Hernalsteens, L. Wyns, S. Oscarson, H. DeGreve, S. Hultgren and J. Bouckaert, Intervening with urinary tract infections using anti-adhesives based on the crystal structure of theFimH-oligomannose-3 complex, PLoS One 3 (2008) e2040; https://doi.org/10.1371/journal.pone.000204010.1371/journal.pone.0002040
  51. 51. R. Ribić, M. Kovačević, V. Petrović-Peroković, I. Gruić-Sovulj, V. Rapić and S. Tomić, Synthesis and biological activity of mannose conjugates with 1-adamantamine and ferrocene amines, Croat. Chem. Acta 83 (2010) 421-431.
  52. 52. M. Kovačević, L. Barišić, R. Ribić, V. Petrović Peroković, S. Tomić and V. Rapić, Ferrocene conjugates with mannose: synthesis and influence of ferrocene aglycon on mannose-mediated adhesion of Escherichia coli, Appl. Organometal. Chem. 26 (2012) 74-79; https://doi.org/10.1002/aoc.186910.1002/aoc.1869
  53. 53. V. Kovač, R. Ribić, V. Petrović Peroković, S. Tomić and L. Barišić, Synthesis, spectral characterization and inhibitory potency of ferrocene-containing mannosides towards type 1 fimbriated Escherichia coli, Appl. Organometal. Chem. 30 (2013) 524-530; https://doi.org/10.1002/aoc.346510.1002/aoc.3465
  54. 54. T. K. Lindhorst, S. Kötter, J. Kubisch, U. Krallmann-Wenzel, S. Ehlers and V. Křen, Effect of psubstitution of aryl α-d-mannosides on inhibiting mannose-sensitive adhesion of Escherichia coli - syntheses and testing, Eur. J. Org. Chem. 1998 (1998) 1669-1674; https://doi.org/10.1002/(SICI)1099-0690(199808)1998:8<;1669::AID-EJOC1669>3.0.CO;2-Q10.1002/(SICI)1099-0690(199808)1998:8<;1669::AID-EJOC1669>3.0.CO;2-Q
  55. 55. N. Firon, S. Ashkenazi, D. Mirelman, I. Ofek and N. Sharon, Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast a find intestinal epithelial cells, Infect. Immun. 55 (1987) 472-476.10.1128/iai.55.2.472-476.1987
  56. 56. O. Sperling, A. Fucha and T. K. Lindhorst, Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands, Org. Biomol. Chem. 4 (2006) 3913-3922; https://doi.org/10.1039/b610745a10.1039/b610745a
  57. 57. Ž. Car, T. Hrenar, V. Petrović Peroković, R. Ribić, M. Seničar and S. Tomić, Mannosylated N-aryl substituted 3-hydroxypyridine-4-ones: synthesis, hemagglutination inhibitory properties, and molecular modeling, Chem. Biol. Drug Des. 84 (2014) 393-401; https://doi.org/10.1111/cbdd.1232910.1111/cbdd.12329
  58. 58. V. Petrović Peroković, R. Ribić, Ž. Car and S. Tomić, Comparison of inhibitory activities of meta and para substituted N-aryl 3-hydroxypyridin-4-one mannosides towards type 1 fimbriated E. coli, Croat. Chem. Acta 89 (2016) 237-242; https://doi.org/10.5562/cca289010.5562/cca2890
  59. 59. S. Kleeb, X. Jiang, P. Frei, A. Sigl, J. Bezençon, K. Bamberger, O. Schwardt and B. Ernst, FimH antagonists: Phosphate prodrugs improve oral bioavailability, J. Med. Chem. 59 (2016) 3163-3182; https://doi.org/10.1021/acs.jmedchem.5b0192310.1021/acs.jmedchem.5b01923
  60. 60. S. Kleeb, L. Pang, K. Mayer, D. Eris, A. Sigl, R. C. Preston, P. Zihlmann, T. Sharpe, R. P. Jakob, D. Abgottspon, A. S. Hutter, M. Scharenberg, X. Jiang, G. Navarra, S. Rabbani, M. Smiesko, N. Lüdin, J. Bezençon, O. Schwardt, T. Maier and B. Ernst, FimH antagonists: Bioisosteres to improve the in vitro and in vivo PK/PD profile, J. Med. Chem. 58 (2015) 2221-2239; https://doi.org/10.1021/jm501524q10.1021/jm501524q
  61. 61. K. L. LaPlante, S. A. Sarkisian, S. Woodmansee, D. C. Rowley and N. P. Seeram, Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species, Phytother. Res. 26 (2012) 1371-1374; https://doi.org/10.1002/ptr.459210.1002/ptr.4592
  62. 62. A. Gupta, M. Dwivedi, A. A. Mahdi, G. A. Nagana Gowda, C. L. Khetrapal and M. Bhandari, Inhibition of adherence of multi-drug resistant E. coli by proanthocyanidin, Urol. Res. 40 (2012) 143-150; https://doi.org/10.1007/s00240-011-0398-210.1007/s00240-011-0398-221688109
  63. 63. A. B. Howell, J. D. Reed, C. G. Krueger, R. Winterbottom, D. G. Cunningham and M. Leahy, A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity, Phytochemistry 66 (2005) 2281-2291; https://doi.org/10.1016/j.phytochem.2005.05.02210.1016/j.phytochem.2005.05.02216055161
  64. 64. J. Sun, J. P. J. Marais, C. Khoo, K. LaPlante, R. M. Vejborg, M. Givskov, T. Tolker-Nielsen, N. P. Seeram and D. C. Rowley, Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli, J. Funct. Foods 17 (2015) 235-242; https://doi.org/10.1016/j.jff.2015.05.01610.1016/j.jff.2015.05.016465787326613004
  65. 65. E. Papas and K. M. Schaich, Phytochemicals of cranberries and cranberry products: Characterization, potential health effects and processing stability, Crit. Rev. Food Sci. Nutr. 49 (2009) 741-781; https://doi.org/10.1080/1040839080214537710.1080/1040839080214537720443158
  66. 66. D. G. de Llano, A. Esteban-Fernández, F. Sánchez-Patán, P. J. Martínlvarez, M. V. Moreno-Arribas and B. Bartolomé, Anti-adhesive activity of cranberry phenolic compounds and their microbialderived metabolites against uropathogenic Escherichia coli in bladder epithelial cell cultures, Int. J. Mol. Sci. 16 (2015) 12119-12130; https://doi.org/10.3390/ijms16061211910.3390/ijms160612119449043326023719
  67. 67. R. P. Felician, C. G. Krueger and J. D. Reed, Methods to determine effects of cranberry proanthocyanidins on extraintestinal infections: Relevance for urinary tract health, Mol. Nutr. Food Res. 59 (2015) 1292-1306; https://doi.org/10.1002/mnfr.20150010810.1002/mnfr.20150010825917127
  68. 68. R. Rajbhandari, N. Peng, R. Moore, A. Arabshahi, J. M. Wyss, S. Barnes and J. K. Prasain, Determination of cranberry phenolic metabolites in rats by liquid chromatography-tandem mass spectrometry, J. Agric. Food Chem. 59 (2011) 6682-6688; https://doi.org/10.1021/jf200673h10.1021/jf200673h316505021634376
  69. 69. A. B. Howell, H. Botto, C. Combescure, A.-B. Blanc-Potard, L. Gausa, T. Matsumoto, P. Tenke, A. Sotto and J.-P. Lavigne, Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study, BMC Infect. Dis. 10 (2010) Article ID 94; https://doi.org/10.1186/1471-2334-10-9410.1186/1471-2334-10-94287355620398248
  70. 70. L. Y. Foo, Y. Lu, A. B. Howell and N. Vorsa, A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli, J. Nat. Prod. 63 (2000) 1225-1228; https://doi.org/10.1021/np000128u10.1021/np000128u11000024
  71. 71. D. L. McKay, C. Y. Chen, C. A. Zampariello and J. B. Blumberg, Flavonoids and phenolic acids from cranberry juice are bioavailable and bioactive in healthy older adults, Food Chem. 168 (2015) 233-240; https://doi.org/10.1016/j.foodchem.2014.07.06210.1016/j.foodchem.2014.07.06225172705
  72. 72. K. Valentova, D. Stejskal, P. Bednar, J. Vostalova, C. Cíhalík, R. Vecerova, D. Koukalova, M. Kolar, R. Reichenbach. L. Sknouril, J. Ulrichova and V. Simanek, Biosafety, antioxidant status, and metabolites in urine after consumption of dried cranberry juice in healthy women: a pilot doubleblind placebo-controlled trial, J. Agric. Food Chem. 55 (2007) 3217-3224; https://doi.org/10.1021/jf063601410.1021/jf063601417381122
  73. 73. C. Wang, Y. Zuo, J. A. Vinson and Y. Deng, Absorption and excretion of cranberry-derived phenolics in humans, Food Chem. 132 (2012) 1420-1428; https://doi.org/10.1016/j.foodchem.2011.11.13110.1016/j.foodchem.2011.11.13129243631
  74. 74. M. A. Polewski, C. G. Krueger, J. D. Reed and G. Leyer, Ability of cranberry proanthocyanidins in combination with a probiotic formulation to inhibit in vitro invasion of gut epithelial cells by extra-intestinal pathogenic E. coli, J. Funct. Foods 25 (2016) 123-134; https://doi.org/10.1016/j.jff.2016.05.01510.1016/j.jff.2016.05.015
  75. 75. D. Nicolosi, G. Tempera, C. Genovese and P. M. Furneri, Anti-adhesion activity of A2-type proanthocyanidins (a cranberry major component) on uropathogenic E. coli and P. mirabilis strains, Antibiotics (Basel) 3 (2014) 143-154; https://doi.org/10.3390/antibiotics302014310.3390/antibiotics3020143479039427025740
  76. 76. M. A. Amalaradjou, A. Narayanan and K. Venkitanarayanan, Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression, J. Urol. 185 (2011) 1526-1531; https://doi.org/10.1016/j.juro.2010.11.07810.1016/j.juro.2010.11.07821334666
  77. 77. A. E. Stapleton, J. Dziura, T. M. Hooton, M. E. Cox, Y. Yarova-Yarovaya, S. Chen and K. Gupta, Recurrent urinary tract infection and urinary Escherichia coli in women ingesting cranberry juice daily: a randomized controlled trial, Mayo Clin. Proc. 87 (2012) 143-150; https://doi.org/10.1016/j.mayocp.2011.10.00610.1016/j.mayocp.2011.10.006349755022305026
  78. 78. Â. Luís, F. Domingues and L. Pereira, Can cranberries contribute to reduce the incidence of urinary tract infections? - A systematic review with meta-analysis and trial sequential analysis of clinical trials, J. Urol. 198 (2017) 614-621; https://doi.org/10.1016/j.juro.2017.03.07810.1016/j.juro.2017.03.07828288837
  79. 79. R. Fumeaux, C. Menozzi-Smarrito, A. Stalmach, C. Munari, K. Kraehenbuehl, H. Steiling, A. Crozier, G. Williamson and D. Barron, First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption, Org. Biomol. Chem. 8 (2010) 5199-5211; https://doi.org/10.1039/c0ob00137f10.1039/c0ob00137f20842300
  80. 80. C. G. Krueger, J. D. Reed, R. P. Feliciano and A. B. Howell, Quantifying and characterizing proanthocyanidins in cranberries in relation to urinary tract health, Anal. Bioanal. Chem. 405 (2013) 4385-4395; https://doi.org/10.1007/s00216-013-6750-310.1007/s00216-013-6750-323397091
DOI: https://doi.org/10.2478/acph-2018-0004 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 1 - 18
Accepted on: Nov 2, 2017
Published on: Feb 16, 2018
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2018 Rosana Ribić, Tomislav Meštrović, Marijana Neuberg, Goran Kozina, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.