Have a personal or library account? Click to login
Distinguishing Smilax glabra and Smilax china rhizomes by flow-injection mass spectrometry combined with principal component analysis Cover

Distinguishing Smilax glabra and Smilax china rhizomes by flow-injection mass spectrometry combined with principal component analysis

Open Access
|Feb 2018

References

  1. 1. Pharmacopoeia of Peoples Republic of China, 2015 ed., National Commission of Chinese Pharmacopoeia, China Medical Science and Technology Press, Beijing 2015, pp. 18, 308-309.
  2. 2. R. Yoon, S.-H. Yang, J.-W. Suh and S.-M. Shim, Fermentation of Smilax china root by Aspergillus usami and Saccharomyces cerevisiae promoted concentration of resveratrol and oxyresveratrol and the free-radical scavenging activity, J. Sci. Food Agr. 94 (2014) 1822-1826; https://doi.org/10.1002/jsfa.649910.1002/jsfa.649924919869
  3. 3. C.-L. Lu, W. Zhu, D.-M. Wang, W.-L. Chen, M.-M. Hu, M. Wang, X.-J. Xu and C. J. Lu, Inhibitory effects of chemical compounds isolated from the rhizome of Smilax glabra on nitric oxide and tumor necrosis factor-α production in lipopolysaccharide-induced RAW264.7 cell, Evid. Complem. Altern. Med. eCAM 2015 (2015) Article ID 602425 (9 pages); https://doi.org/10.1155/2015/60242510.1155/2015/602425436360325821492
  4. 4. S. Xu, M.-Y. Shang, G.-X. Liu, F. Xu, F.-C. Li, X. Wang and S.-Q. Cai, Simultaneous determination of seven bioactive constituents in Smilacis glabrae rhizoma by high-performance liquid chromatography, China J. Chin. Mat. Med. 40 (2015) 469-479; https://doi.org/10.4268/cjcmm2015031910.4268/cjcmm20150319
  5. 5. Y. Tang, X. He, Q. Chen, L. Fan, J. Zhang, Z. Zhao, L. Dong, Z. Liang, T. Yi and H. Chen, A mixed microscopic method for differentiating seven species of “Bixie”-related Chinese Materia Medica, Microsc. Res. Tech. 77 (2014) 57-70; https://doi.org/10.1002/jemt.2231310.1002/jemt.2231324227636
  6. 6. G. Y. Qu, K. X. Dong, X. H. Wang, L. Zhu and L. S. Dong, Analysis of diosgenin of 8 species of medicinal plants from smilax group in Guizhou province, West China J. Pharm. Sci. 25 (2010) 135-137.
  7. 7. B. Shao, H. Z. Guo, Y. J. Cui, A. H. Liu, H. L. Yu, H. Guo, M. Xu and D. A. Guo, Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography, J. Pharm. Biomed. Anal. 44 (2007) 737-742; https://doi.org/10.1016/j.jpba.2007.03.00810.1016/j.jpba.2007.03.00817475435
  8. 8. H. L. Huang, J. H. Sun, J. A. Mccoy, H. Y. Zhong, E. J. Fletcher, J. Harnly and P. Chen, Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species, Spectrochim. Acta B 105 (2015) 121-129; https://doi.org/10.1016/j.sab.2014.10.00510.1016/j.sab.2014.10.005
  9. 9. T. Fuhrer, D. Heer, B. Begemann and N. Zamboni, High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry, Anal. Chem. 83 (2011) 7074-7080; https://doi.org/10.1021/ac201267k10.1021/ac201267k21830798
  10. 10. G. M. Kirwan, E. Johansson, R. Kleemann, E. R. Verheij, A. M. Wheelock, S. Goto, J. Trygg and C. E. Wheelock, Building multivariate systems biology models, Anal. Chem. 84 (2012) 7064-7071; https://doi.org/10.1021/ac301269r10.1021/ac301269r22856472
  11. 11. S. Wiklund, E. Johansson, L. Sjöström, E. J. Mellerowicz, U. Edlund, J. P. Shockcor, J. Gottfries, T. Moritz and J. Trygg, Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models, Anal. Chem. 80 (2008) 115-122; https://doi.org/10.1021/ac071351010.1021/ac071351018027910
  12. 12. A. H.-Zhang, H. Sun, Y. Han, G.-L. Yan, Y. Yuan, G.-C. Song, X.-X. Yuan, N. Xie and X.-J. Wang, Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets, Anal. Chem. 85 (2013) 7606-7612; https://doi.org/10.1021/ac401793d10.1021/ac401793d23845028
  13. 13. T. She, C. Zhao, J. Feng, L. Wang, L. Qu, K. Fang, S. Cai and C. Shou, Sarsaparilla (Smilax glabra rhizome) extract inhibits migration and invasion of cancer cells by suppressing TGF-b1 pathway, PloS One 10 (2015) e0118287; https://doi.org/10.1371/journal.pone.011828710.1371/journal.pone.0118287435124825742000
  14. 14. W. Y. Gu, N. Li, E. L. Leung, H. Zhou, G. A. Luo, L. Liu and J. L. Wu, Metabolites software-assisted flavonoid hunting in plants using ultra-high performance liquid chromatography-quadrupoletime of flight mass spectrometry, Molecules 20 (2015) 3955-3971; https://doi.org/10.3390/molecules2003395510.3390/molecules20033955627273125738538
  15. 15. H. Zhang, L. S. Dong, H. B. Chen, X. C. He, X. Q. Ge, X. G. Zhang and Y. Y. Zhou, Content detemination of total tannin in Smilax glabra with reddish brown and off-white colored cross section, China J. Chin. Mat. Med. 38 (2013) 852-855; https://doi.org/10.4268/cjcmm2013061610.4268/cjcmm20130616
  16. 16. H. L. Huang, R. H. Liu and F. Shao, Structural determination of two new steroidal saponins from Smilax china, Magnet. Res. Chem. MRC 47 (2009) 741-745; https://doi.org/10.1002/mrc.245510.1002/mrc.245519466711
  17. 17. Y. Xu, J. Y. Liang and Z. M. Zou, Studies on chemical constituents of rhizomes of Smilax china, China J. Chin. Mat. Med. 33 (2008) 2497-2499.
  18. 18. B. Shao, H. Guo, Y. Cui, M. Ye, J. Han and D. Guo, Steroidal saponins from Smilax china and their anti-inflammatory activities, Phytochemistry 68 (2007) 623-630; https://doi.org/10.1016/j.phytochem.2006.10.02610.1016/j.phytochem.2006.10.02617166529
  19. 19. B. Gao, F. Qin, T. Ding, Y. Chen, W. Lu and L. L. Yu, Differentiating organically and conventionally grown oregano using ultraperformance liquid chromatography mass spectrometry (UPLCMS), headspace gas chromatography with flame ionization detection (headspace-GC-FID), and flow injection mass spectrum (FIMS) fingerprints combined with multivariate data analysis, J. Agr. Food Chem. 62 (2014) 8075-8084; https://doi.org/10.1021/jf502419y10.1021/jf502419y25050447
  20. 20. Y. H. Ma, W. W. Xie, T. T. Tian, Y. R. Jin, H. J. Xu, K. R. Zhang and Y. F. Du, Identification and comparative oridonin metabolism in different species liver microsomes by using UPLC-Triple-TOFMS/MS and PCA, Anal. Biochem. 511 (2016) 61-73; https://doi.org/10.1016/j.ab.2016.08.00410.1016/j.ab.2016.08.00427503750
  21. 21. E. Iorgulescu, V. A. Voicu, C. Sarbu, F. Tache, F. Albu and A. Medvedovici, Experimental variability and data pre-processing as factors affecting the discrimination power of some chemometric approaches (PCA, CA and a new algorithm based on linear regression) applied to (+/-) ESI/MS and RPLC/UV data: Application on green tea extracts, Talanta 155 (2016) 133-144; https://doi.org/10.1016/j.talanta.2016.04.04210.1016/j.talanta.2016.04.04227216666
  22. 22. A. Napolitano, S. Akay, A. Mari, E. Bedir, C. Pizza and S. Piacente, An analytical approach based on ESI-MS, LC-MS and PCA for the quail-quantitative analysis of cycloartane derivatives in Astragalus spp, J. Pharm. Biomed. Anal. 85 (2013) 46-54; https://doi.org/10.1016/j.jpba.2013.06.02110.1016/j.jpba.2013.06.02123876377
DOI: https://doi.org/10.2478/acph-2018-0003 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 87 - 96
Accepted on: Oct 25, 2017
Published on: Feb 16, 2018
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2018 Jian Liang, Meng Zhou, Lin-Yu Li, Ji-Cheng Shu, Yong-Hong Liang, Feng-Qin Li, Li Xiong, Hui-Lian Huang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.