Have a personal or library account? Click to login

Cytoprotective potential of anti-ischemic drugs against chemotherapy-induced cardiotoxicity in H9c2 myoblast cell line

Open Access
|Dec 2013

References

  1. 1. W. A. Denny, Emerging DNA topisomerase inhibitors as anticancer drugs, Expert Opin. Emerg. Drugs 9 (2004) 105-133; DOI: 10.1517/eoed.9.1.105.32948.10.1517/eoed.9.1.105.3294815155139
  2. 2. L. F. Liu, DNA topoisomerase poisons as antitumor drugs, Annu. Rev. Biochem. 58 (1989) 351-375; DOI: 10.1146/annurev.bi.58.070189.002031.10.1146/annurev.bi.58.070189.0020312549853
  3. 3. G. Takemura and H. Fujiwara, Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management, Prog. Cardiovasc. Dis. 49 (2007) 330-352; DOI: 10.1016/j.pcad.2006.10.002.10.1016/j.pcad.2006.10.00217329180
  4. 4. S. Hitchcock-Bryan, R. Gelber, J. R. Cassady and S. E. Sallan, The impact of induction anthracycline on long-term failure-free survival in childhood acute lymphoblastic leukemia, Med. Pediatr. Oncol. 14 (1986) 211-215; DOI: http://dx.doi.org/10.1002/mpo.2950140405.10.1002/mpo.29501404053462467
  5. 5. T. Feridooni, A. Hotchkiss, S. Remley-Carr, Y. Saga and K. B. S. Pasumarthi, Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes, PLoS ONE 6 (2011) e22801; DOI:10.1371/journal.pone.0022801.10.1371/journal.pone.0022801314576521829519
  6. 6. X. Z. Han, S. Gao, Y. N. Cheng, Y. Z. Sun, W. Liu, L. L. Tang and D. M. Ren, Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 cardiomyocytes, Biosci. Trends 6 (2012) 19-25; DOI: 10.5582/bst.2012.v6.1.19.10.5582/bst.2012.v6.1.1922426099
  7. 7. B. Glimelius, Benefit-risk assessment of irinotecan in advanced colorectal cancer, Drug Saf. 28 (2005) 417-433; DOI: http://dx.doi.org/10.2165/00002018-200528050-00005.10.2165/00002018-200528050-0000515853443
  8. 8. J. Weekes, A. K.-Y. Lam, S. Sebesan and Y.-H. Ho, Irinotecan therapy and molecular targets in colorectal cancer: a systemic review, World J. Gastroenterol. 15 (2009) 3597-3602; DOI: http://dx.doi.org/10.3748/wjg.15.3597.10.3748/wjg.15.3597272123219653336
  9. 9. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo and L. Gianni, Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity, Pharmacol. Rev. 56 (2004) 185-229; DOI: 10.1124/pr.56.2.6.10.1124/pr.56.2.615169927
  10. 10. R. Nithipongvanitch, W. Ittarat, M. P. Cole, J. Tangpong, D. K. S. Clair and T. D. Oberley, Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)?, Antioxid. Redox Signal. 9 (2007) 1001-1008; DOI:10.1089/ars.2007.1632.10.1089/ars.2007.163217508921
  11. 11. E. H. Herman and V. J. Ferrans, Amelioration of chronic anthracycline cardiotoxicity by ICRF- -187 and other compounds, Cancer Treat Rev. 14 (1987) 225-259; DOI: 10.1016/0305-7372(87) 90011-9.
  12. 12. S. M. Swain, F. S. Whaley, M. C. Gerber, M. S. Ewer, J. R. Bianchine and R. A. Gams, Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy, J. Clin. Oncol. 15 (1997) 13331340.
  13. 13. S. M. Swain and P. Vici, The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: expert panel review, J. Cancer Res. Clin. Oncol. 130 (2004) 1-7; DOI: 10. 1007/s00432-003-0498-7.10.1007/s00432-003-0498-714564513
  14. 14. M. S. Wolin, Interactions of oxidants with vascular signaling systems, Arterioscl. Throm. Vas.Biol. 20 (2000) 1430-1442; DOI: 10.1161/01.ATV.20.6.1430.10.1161/01.ATV.20.6.1430
  15. 15. D. B. Sawyer, R. Fukazawa, M. A. Arstall and R. A. Kelly, Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane, Circ. Res. 84 (1999) 257-65; DOI: 10.1161/01.RES.84.3.257.10.1161/01.RES.84.3.257
  16. 16. J. Bierau, R. Leen, A. H. van Gennip, H. N. Caron and A. B. P. van Kuilenburg, Determination of the deoxycytidine kinase activity in cell homogenates with a non-radiochemical assay using reversed- phase high performance liquid chromatography; Identification of a novel metabolite of 2-chlorodeoxyadenosine, J. Chromatogr. B 805 (2004) 339-346; DOI: 10.1016/j.jchromb.2004.03.036.10.1016/j.jchromb.2004.03.03615135110
  17. 17. B. Diop-Frimpong, V. P. Chauhan, S. Krane, Y. Boucher and R. K. Jain, Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors, Proc. Natl. Acad. Sci. USA 108 (2011) 2909-2914; DOI: 10.1073/pnas.1018892108.10.1073/pnas.1018892108304111521282607
  18. 18. C. E. Runyan, H. W. Schnaper and A.-C. Poncelet, The role of internalization in transforming growth factor beta1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells, J. Biol. Chem. 280 (2005) 8300-8308; DOI: 10.1074/jbc.M407939200.10.1074/jbc.M40793920015613484
  19. 19. K. Tamaki, S. Okuda, T. Ando, T. Iwamoto, M. Nakayama and M. Fujishima, TGF-beta 1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy, Kidney Int. 45 (1994) 525-536. 10.1038/ki.1994.688164441
DOI: https://doi.org/10.2478/acph-2013-0038 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 493 - 503
Published on: Dec 31, 2013
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2013 Tiam Feridooni, Chris Mac Donald, Di Shao, Pollen Yeung, Remigius U. Agu, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons License.