Have a personal or library account? Click to login
Methods of amorphization and investigation of the amorphous state Cover

Methods of amorphization and investigation of the amorphous state

Open Access
|Oct 2013

References

  1. 1. B. C. Hancock and G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems, J. Pharm. Sci. 86 (1997) 1-12; DOI: 10.1021/js9601896.10.1021/js9601896
  2. 2. L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization, Adv. Drug Delivery Rev. 48 (2001) 27-42; DOI: 10.1016/S0169-409X(01)00098-9.10.1016/S0169-409X(01)00098-9
  3. 3. G. L. Amidon, H. Lennernäs, V. P. Shah and J. R. Crison, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. 12 (1995) 413-420; DOI: 10.1023/A:1016212804288.10.1023/A:1016212804288
  4. 4. P. Poole, T. Grande, C. Angell and P. McMillan, Polymorphic phase transitions in liquids and glasses, Science 275 (1997) 322-323; DOI: 10.1126/science.275.5298.322.10.1126/science.275.5298.322
  5. 5. A. Saleki-Gerhardt, J. G. Stowell, S. R. Byrn and G. Zografi, Hydration and dehydration of crystalline and amorphous forms of raffinose, J. Pharm. 84 (1995) 318-323.
  6. 6. L. R. L. Hilden and K. R. K. Morris, Physics of amorphous solids, J. Pharm. 93 (2003) 3-12; DOI: 10.1002/jps.10489.10.1002/jps.1048914648630
  7. 7. K. A. Graeser, C. J. Strachan, J. E. Patterson, K. C. Gordon and T. Rades, Physicochemical properties and stability of two differently prepared amorphous forms of simvastatin, Cryst. GrowthDes. 8 (2008) 128-135; DOI: 10.1021/cg700913m.10.1021/cg700913m
  8. 8. P. Karmwar, K. Graeser, K. C. Gordon, C. J. Strachan and T. Rades, Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods, Int. J. Pharm. 417 (2011) 94-100; DOI: 10.1016/j.ijpharm.2010.12.019.10.1016/j.ijpharm.2010.12.01921182910
  9. 9. M. Otsuka, J.-I. Nishizawa, N. Fukura and T. Sasaki, Characterization of poly-amorphous indomethacin by terahertz spectroscopy, J. Infrared Milli. Terahz. Waves 33 (2012) 953-962; DOI: 10. 1007/s10762-012-9910-1.10.1007/s10762-012-9910-1
  10. 10. R. Lefort, A. De Gusseme, J. F. Willart, F. Danède and M. Descamps, Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball- -milling of trehalose, Int. J. Pharm. 280 (2004) 209-219; DOI: 10.1016/j.ijpharm.2004.05.012.10.1016/j.ijpharm.2004.05.01215265560
  11. 11. D. Kivelson, J. Pereda, K. Luu, M. Lee, H. Sakai, A. Ha, I. Cohen and G. Tarjus, Facts and speculation concerning low-temperature polymorphism in glass formers, Symp. Ser. 676 (1997), 224-232; DOI: 10.1021/bk-1997-0676.ch017.10.1021/bk-1997-0676.ch017
  12. 12. J. E. Patterson, M. B. James, A. H. Forster, R. W. Lancaster, J. M. Butler and T. Rades, The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds, J. Pharm. Sci. 94 (2005) 1998-2012; DOI: 10.1002/jps.20424.10.1002/jps.20424
  13. 13. D. Q. D. Craig, V. L. V. Kett, J. R. J. Murphy and D. M. D. Price, The measurement of small quantities of amorphous material-should we be considering the rigid amorphous fraction, Pharm. Res. 18 (2001) 1081-1082.10.1023/A:1010999615450
  14. 14. D. Turnbull, Under what conditions can a glass be formed?, Contemp. Phys. 10 (1969) 473-488; DOI: 10.1080/00107516908204405.10.1080/00107516908204405
  15. 15. C. Angell, Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non-Cryst. Solids 102 (1988) 205-221; DOI: 10.1016/0022-3093(88)90133-0.10.1016/0022-3093(88)90133-0
  16. 16. J. Liu, D. Rigsbee, C. Stotz and M. Pikal, Dynamics of pharmaceutical amorphous solids: The study of enthalpy relaxation by isothermal microcalorimetry, J. Pharm. Sci. 91 (2002) 1853-1862; DOI:10.1002/jps.10181.10.1002/jps.1018112115812
  17. 17. D. Grant, Polymorphism in Pharmaceutical Solids, Marcel Dekker, Basel 1999, pp. 183-227.
  18. 18. K. A. Graeser, J. E. Patterson, J. A. Zeitler, K. C. Gordon and T. Rades, Correlating thermodynamic and kinetic parameters with amorphous stability, Eur. J. Pharm. Sci. 37 (2009) 492-498; DOI: 10.1016/j.ejps.2009.04.005.10.1016/j.ejps.2009.04.00519394421
  19. 19. J. W. Lee, L. C. Thomas and S. J. Schmidt, Effects of heating conditions on the glass transition parameters of amorphous sucrose produced by melt-quenching, J. Agric. Food Chem. 59 (2011) 3311-3319; DOI: 10.1021/jf104853s.10.1021/jf104853s21381719
  20. 20. H. Miyanishi, T. Nemoto, M. Mizuno, H. Mimura, S. Kitamura, Y. Iwao, S. Noguchi and S. Itai, Evaluation of crystallization behavior on the surface of nifedipine solid dispersion powder using inverse gas chromatography, Pharm. Res. 30 (2013) 502-511; DOI: 10.1007/s11095-012-0896-0.10.1007/s11095-012-0896-023104579
  21. 21. M. G. Abiad, D. C. Gonzalez, B. Mert, O. H. Campanella and M. T. Carvajal, A novel method to measure the glass and melting transitions of pharmaceutical powders, Int. J. Pharm. 396 (2010) 23-29; DOI: 10.1016/j.ijpharm.2010.06.001.10.1016/j.ijpharm.2010.06.00120538050
  22. 22. H. Takeuchi, S. Nagira, H. Yamamoto and Y. Kawashima, Solid dispersion particles of tolbutamide prepared with fine silica particles by the spray-drying method, Powder Technol. 141 (2004) 187-195; DOI: 10.1016/j,powtec.2004.03.007.
  23. 23. R. C. Rowe, P. J. Sheskey, W. G. Cook and M. F. Fenton, Colloidal Silicon Dioxide, in Handbook ofPharmaceutical Excipients, Pharmaceutical Press, London 2000, pp. 143-145.
  24. 24. H. Takeuchi, T. Handa and Y. Kawashima, Spherical solid dispersion containing amorphous tolbutamide embedded in enteric coating polymers or colloidal silica prepared by spray-drying technique, Chem. Pharm. Bull. 35 (1987) 3800-3806.10.1248/cpb.35.38002830037
  25. 25. I. Chuang and G. Maciel, Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics, J. Am. Chem. Soc. 118 (1996) 401-406; DOI: 10.1021/ja951550d.10.1021/ja951550d
  26. 26. J. Broadhead, S. K. E. Rouan and C. T. Rhodes, The spray drying of pharmaceuticals, Drug. Dev. Ind. Pharm. 18 (1992) 11-12; DOI: 10.3109/03639049209046327.10.3109/03639049209046327
  27. 27. R. Vehring, Pharmaceutical particle engineering via spray drying, Pharm. Res. 25 (2008) 999-1022; DOI: 10.1007/s11095-007-9475-1.10.1007/s11095-007-9475-1
  28. 28. K. Haque and Y. H. Roos, Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose, Carbohyd. Res. 340 (2005) 293-301; DOI: 10.1016/j.carres.2004.11.026.10.1016/j.carres.2004.11.026
  29. 29. D. Chiou, T. A. G. Langrish and R. Braham, The effect of temperature on the crystallinity of lactose powders produced by spray drying, J. Food Eng. 86 288-293; DOI: 10.1016/j.jfoodeng.2007. 10.005.
  30. 30. S. P. Bhardwaj, K. K. Arora, E. Kwong, A. Templeton, S. D. Clas and R. Suryanarayanan, Correlation between molecular mobility and physical stability of amorphous itraconazole, Mol. Pharm. 10 (2013) 694-700; DOI: 10.1021/mp300487u.10.1021/mp300487u
  31. 31. M. Vogt, K. Kunath and J. B. Dressman, Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations, Eur. J. Pharm. Biopharm. 68 (2008) 283-288; DOI: 10.1016/j.ejpb.2007.05.010.10.1016/j.ejpb.2007.05.010
  32. 32. D. Q. Craig, P. G. Royall, V. L. Kett and M. L. Hopton, The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems, Int. J. Pharm. 179 (1999) 179-207; DOI: 10.1016/S0378-5173(98)00338-X.10.1016/S0378-5173(98)00338-X
  33. 33. J. Liu, Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development, Pharm. Dev. Technol. 11 (2006) 3-28; DOI: 10.1080/10837450500463729.10.1080/1083745050046372916544906
  34. 34. S. P. Bhardwaj and R. Suryanarayanan, Molecular mobility as an effective predictor of the physical stability of amorphous trehalose, Mol. Pharm. 9 (2012) 3209-3217; DOI: 10.1021/mp300302g.10.1021/mp300302g23003337
  35. 35. K. P. O’Donnell, Z. Cai, P. Schmerler and R. O. I. Williams, Atmospheric freeze drying for the reduction of powder electrostatics of amorphous, low density, high surface area pharmaceutical powders, Drug Dev. Ind. Pharm. 39 (2013) 205-217; DOI: 10.3109/03639045.2012.669385.10.3109/03639045.2012.66938522612245
  36. 36. Y. Li, J. Han, G. G. Zhang, D. J. Grant and R. Suryanarayanan, In situ dehydration of carbamazepine dihydrate: a novel technique to prepare amorphous anhydrous carbamazepine, Pharm. Dev. Technol. 5 (2000) 257-266; DOI: 10.1081/PDT-100100540.10.1081/PDT-100100540
  37. 37. F. Sussich and A. Cesaro, Trehalose amorphization and recrystallization, Carboh. Res. 343 2667-2674; DOI: 10.1016/j.carres.2008.08.008.10.1016/j.carres.2008.08.00818768170
  38. 38. B. Bennett and G. Cole, Secondary Pharmaceutical Production: An Engineering Guide, IChemE 2003, pp. 111-201.
  39. 39. D. M. Parikh, Handbook of Pharmaceutical Granuation Technology, Taylor and Francis, London 2005, pp. 491-512.10.1201/9780849354953
  40. 40. R. Liu, Water-InsolubleDrug Formulation, Taylor and Francis, London 2008, pp. 88-455.10.1201/9781420009552
  41. 41. R. Price and P. M. Young, On the physical transformations of processed pharmaceutical solids, Micron. 36 (2005) 519-524; DOI: 10.1016/j.micron.2005.04.003.10.1016/j.micron.2005.04.00315993096
  42. 42. G. Zhang, C. Gu, M. Zell, R. Burkhardt, E. Munson and D. Grant, Crystallization and transitions of sulfamerazine polymorphs, J. Pharm. Sci. 91 (2002) 1089-1100; DOI: 10.1002/jps.10100.10.1002/jps.1010011948548
  43. 43. P. Thanatuksorn, K. Kawai, K. Kajiwara and T. Suzuki, Effects of ball-milling on the glass transition of wheat flour constituents, J. Sci. Food Agric. 89 (2009) 430-435; DOI: 10.1002/jsfa.3463.10.1002/jsfa.3463
  44. 44. J. F. Willart and M. Descamps, Solid state amorphization of pharmaceuticals, Mol. Pharmaceutics5 (2008) 905-920; DOI: 10.1021/mp800092t.10.1021/mp800092t18954076
  45. 45. A. Revesz, Melting behavior and origin of strain in ball-milled nanocrystalline Al powders, J. Mater. Sci. 40 (2005) 1643-1646; DOI: 10.1007/s10853-005-0664-1.10.1007/s10853-005-0664-1
  46. 46. S. Karki, T. Friscic, W. Jones and W. D. S. Motherwell, Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding, Mol. Pharmaceutics 4 (2007) 347-354; DOI: 10. 1021/mp0700054.10.1021/mp070005417497885
  47. 47. K. Chadwick, R. Davey and W. Cross, How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine, CrystEngComm 9 (2007) 732-734; DOI: 10.1039/ b709411f.10.1039/b709411f
  48. 48. T. Shakhtshneider, Phase transformations and stabilization of metastable states of molecular crystals under mechanical activation, Solid State Ionics 101 (1997) 851-856; DOI: 10.1016/S0167-2738(97)00224-5.10.1016/S0167-2738(97)00224-5
  49. 49. E. Dudognon, J. Willart, V. Caron, F. Capet, T. Larsson and M. Descamps, Formation of budesonide/ alpha-lactose glass solutions by ball-milling, Solid State Commun. 138 (2006) 68-71; DOI: 10.1016/j.ssc.2006.02.007.10.1016/j.ssc.2006.02.007
  50. 50. I. Tsukushi, O. Yamamuro and T. Matsuo, Solid state amorphization of organic molecular crystals using a vibrating mill, Solid State Commun. 94 (1995) 1013-1013; DOI: 10.1016/0038-1098 (95)00161-1.
  51. 51. J. Font, J. Muntasell and E. Cesari, Amorphization of organic compounds by ball milling, Mater. Res. Bull. 32 (1997) 1691-1696; DOI: 10.1016/S0025-5408(97)00162-1.10.1016/S0025-5408(97)00162-1
  52. 52. J. Willart, V. Caron, R. Lefort, F. Danède, D. Prevost and M. Descamps, Athermal character of the solid state amorphization of lactose induced by ball milling, Solid State Commun. 132 (2004) 693-696; DOI: 10.1016/j.ssc.2004.09.007.10.1016/j.ssc.2004.09.007
  53. 53. M. Otsuka, H. Ohtani, N. Kaneniwa and S. Higuchi, Isomerization of lactose in solid-state by mechanical stress during grinding, J. Pharm. Pharmacol. 43 (1991) 148-153; DOI: 10.1111/j.2042-7158.1991.tb06656.x.10.1111/j.2042-7158.1991.tb06656.x
  54. 54. J. Willart, A. De Gusseme, S. Hemon, G. Odou, F. Danède and M. Descamps, Direct crystal to glass transformation of trehalose induced by ball milling, Solid State Commun. 119 (2001) 501-505; DOI: 10.1016/S0038-1098(01)00283-6.10.1016/S0038-1098(01)00283-6
  55. 55. A. J. Megarry, J. Booth and J. Burley, Amorphous trehalose dihydrate by cryogenic milling, Carbohyd. Res. 346 (2011) 1061-1064; DOI: 10.1016/j.carres.2011.03.011.10.1016/j.carres.2011.03.011
  56. 56. J. F. Willart, N. Dujardin, E. Dudognon, F. Danède and M. Descamps, Amorphization of sugar hydrates upon milling, Carbohyd. Res. 345 (2010) 1613-1616; DOI: 10.1016/j.carres.2010.04.014.10.1016/j.carres.2010.04.014
  57. 57. P. Okamoto and N. Lam, Physics of crystal-to-glass transformations, Solid State Phys. 52 (1999) 1-135; DOI: 10.1016/S0081-1947(08)60018-1.10.1016/S0081-1947(08)60018-1
  58. 58. H. Fecht, Defect-induced melting and solid-state amorphization, Nature 356 (1992) 133-135; DOI: 10.1016/S0081-1947(08)60018-1.10.1016/S0081-1947(08)60018-1
  59. 59. M. Descamps, J. F. Willart, E. Dudognon and V. Caron, Transformation of pharmaceutical compounds upon milling and comilling: the role of Tg, J. Pharm. Sci. 96 (2007) 1398-1407; DOI: 10. 1002/jps.20939.10.1002/jps.20939
  60. 60. J. Willart, N. Descamps, V. Caron, F. Capet, F. Danède and M. Descamps, Formation of lactose- -mannitol molecular alloys by solid state vitrification, Solid State Commun. 138 (2006) 194-199; DOI: 10.1016/j.ssc.2006.02.034.10.1016/j.ssc.2006.02.034
  61. 61. G. Martin and P. Bellon, Driven alloys, Solid State Phys. 50 (1997) 189-331.10.1016/S0081-1947(08)60605-0
  62. 62. S. Qi, I. Weuts, S. De Cort, S. Stokbroekx, R. Leemans, M. Reading, P. Belton and D. Q. M. Craig, An investigation into the crystallisation behaviour of an amorphous cryomilled pharmaceutical material above and below the glass transition temperature, J. Pharm. Sci. 99 (2010) 196-208; DOI: 10.1002/jps.21811.10.1002/jps.21811
  63. 63. K. J. Crowley and G. Zografi, Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability, J. Pharm. Sci. 91 (2002) 492-507; DOI: 10.1002/jps.10028.10.1002/jps.10028
  64. 64. J. Carstensen, Advanced Pharmaceutical Solids, Marcel Dekker, New York 2001, pp. 107-117.10.1201/b16941
  65. 65. C. Sun and D. J. Grant, Influence of crystal shape on the tableting performance of L-lysine monohydrochloride dihydrate, J. Pharm. Sci. 90 (2001) 569-579; DOI: 10.1002/1520-6017(200105)90: 5<569::AID-JPS1013>3.0.CO;2-4.
  66. 66. V. Chikhalia, R. T. Forbes, R. A. Storey and M. Ticehurst, The effect of crystal morphology and mill type on milling induced crystal disorder, Eur. J. Pharm. Sci. 27 (2006) 19-26; DOI: 10.1016/ j.ejps.2005.08.013.10.1016/j.ejps.2005.08.013
  67. 67. T. Watanabe, S. Hasegawa, N. Wakiyama, A. Kusai and M. Senna, Comparison between polyvinylpyrrolidone and silica nanoparticles as carriers for indomethacin in a solid state dispersion, Int. J. Pharm. 250 (2003) 283-286; DOI: 10.1016/S0378-5173(02)00549-5.10.1016/S0378-5173(02)00549-5
  68. 68. A. Ali, K. Yamamoto, A. Elsayed, F. Habib and Y. Nakai, Molecular behavior of flufenamic acid in physical and ground mixtures with florite, Chem. Pharm. Bull. 40 (1992) 1289-1294.10.1248/cpb.40.1289
  69. 69. H. Sekizaki, K. Danjo, H. Eguchi, Y. Yonezawa, H. Sunada and A. Otsuka, Solid-state interaction of ibuprofen with polyvinylpyrrolidone, Chem. Pharm. Bull. 43 (1995) 988-993.10.1248/cpb.43.988
  70. 70. V. Boldyrev, T. Shakhtshneider, L. Burleva and V. Severstev, Preparation of the disperse systems of sulfathiazole-polyvinylpyrrolidone by mechanical activation, Drug Dev. Ind. Pharm. 20 (1994) 1103-1114.10.3109/03639049409038355
  71. 71. N. Kaneniwa and A. Ikekava, Solubilization of Water-insoluble organic powders by ball-milling in the presence of polyvinylpyrrolidone, Chem. Pharm. Bull. 23 (1975) 2973-2986.10.1248/cpb.23.2973
  72. 72. N. Kaneniwa, A. Ikekava and M. Sumi, A decrease in crystallinity of amobarbital by mechanical treatment in presence of diluents, Chem. Pharm. Bull. 26 (1978) 2734-2743.10.1248/cpb.26.2734
  73. 73. H. Takeuchi, S. Nagira, H. Yamamoto and Y. Kawashima, Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method, Int. J. Pharm. 293 (2005) 155-164; DOI: 10.1016/j.ijpharm.2004.12.019.10.1016/j.ijpharm.2004.12.019
  74. 74. M. Fujii, H. Okada, Y. Shibata, H. Teramachi, M. Kondoh and Y. Watanabe, Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone, Int. J. Pharm.293 (2005) 145-153; DOI: 10.1016/j.ijpharm.2004.12.018.10.1016/j.ijpharm.2004.12.018
  75. 75. Y. Nakai, E. Fukuoka, S. Nakajima and Y. Iida, Effect of grinding on physical and chemical properties of crystalline medicinals with microcrystalline cellulose. 2. Retention of volatile medicinals in ground mixture, Chem. Pharm. Bull. 26 (1978) 2983-2989.10.1248/cpb.26.2983
  76. 76. M. Cirri, F. Maestrelli, S. Furlanetto and P. Mura, Solid-state characterization of glyburide-cyclodextrin co-ground products, J. Therm. Anal. Calorim. 77 (2004) 413-422; DOI: 10.1023/B: JTAN.0000038982.40315.8f.
  77. 77. T. Shakhtshneider, M. Vasiltchenko, A. Politov and V. Boldyrev, The mechanochemical preparation of solid disperse systems of ibuprofen-polyethylene glycol, Int. J. Pharm. 130 (1996) 25-32; DOI: 10.1016/0378-5173(95)04244-X.10.1016/0378-5173(95)04244-X
  78. 78. D. Bahl and R. H. Bogner, Amorphization of indomethacin by co-grinding with Neusilin US2: Amorphization kinetics, physical stability and mechanism, Pharm. Res. 23 (2006) 2317-2325; DOI: 10.1007/s11095-006-9062-x.10.1007/s11095-006-9062-x16927179
  79. 79. U. Zimper, J. Aaltonen, C. M. McGoverin, K. C. Gordon, K. Krauel-Goellner and T. Rades, Quantification of process induced disorder in milled samples using different analytical techniques, Pharmaceutics 2 (2010) 30-49; DOI: 10.3390/pharmaceutics2010030.10.3390/pharmaceutics2010030396834727721341
  80. 80. V. Caron, J. F. Willart, R. Lefort, P. Derollez, F. Danède and M. Descamps, Solid state amorphization kinetic of alpha lactose upon mechanical milling, Carbohyd. Res. 346 (2011) 2622-2628; DOI: 10.1016/j.carres.2011.09.004.10.1016/j.carres.2011.09.004
  81. 81. J. P. Bøtker, P. Karmwar, C. J. Strachan, C. Cornett, F. Tian, Z. Zujovic, J. Rantanen and T. Rades, Assessment of crystalline disorder in cryo-milled samples of indomethacin using atomic pair- -wise distribution functions, Int. J. Pharm. 417 (2011) 112-119; DOI: 10.1016/j.ijpharm.2010.12. 018.
  82. 82. K. Terada, H. Kitano, Y. Yoshihashi and E. Yonemochi, Quantitative correlation between initial dissolution rate and heat of solution of drug, Pharm. Res. 17 (2000) 920-924; DOI: 10.1023/A: 1007514902161
  83. 83. Z. Lavrič, J. Pirnat, J. Lužnik, J. Seliger, V. Žagar, Z. Trontelj and S. Srcic, Application of 14N NQR to the study of piroxicam polymorphism, J. Pharm. Sci. 99 (2010) 4857-4865; DOI: 10.1002/ jps.22186.10.1002/jps.22186
  84. 84. C. J. Strachan, T. Rades and K. C. Gordon, A theoretical and spectroscopic study of gamma- -crystalline and amorphous indomethacin, J. Pharm. Pharmacol. 59 (2007) 261-269; DOI: 10.1211/ jpp.59.2.0012.10.1211/jpp.59.2.0012
  85. 85. M. Savolainen, A. Heinz, C. Strachan, K. C. Gordon, J. Yliruusi, T. Rades and N. Sandler, Screening for differences in the amorphous state of indomethacin using multivariate visualization, Eur. J. Pharm. Sci. 30 (2007) 113-123; DOI: 10.1016/j.ejps.2006.10.010.10.1016/j.ejps.2006.10.010
  86. 86. C. Rawle, C. Lee, C. Strachan, K. Payne, P. Manson and T. Rades, Towards characterization and identification of solid state pharmaceutical mixtures through second harmonic generation, J. Pharm. Sci. 95 (2006) 761-768; DOI: 10.1002/jps.20575.10.1002/jps.20575
  87. 87. G. G. Buckton and P. P. Darcy, Assessment of disorder in crystalline powders - a review of analytical techniques and their application, Int. J. Pharm. 179 (1999) 141-158; DOI: 10.1016/S0378-5173(98)00335-4.10.1016/S0378-5173(98)00335-4
  88. 88. B. Shah, V. K. Kakumanu and A. K. Bansal, Analytical techniques for quantification of amorphous/ crystalline phases in pharmaceutical solids, J. Pharm. Sci. 95 (2006) 1641-1665; DOI: 10. 1002/jps.20644.10.1002/jps.20644
  89. 89. N. Chieng, Z. Zujovic, G. Bowmaker, T. Rades and D. Saville, Effect of milling conditions on the solid-state conversion of ranitidine hydrochloride form 1, Int. J. Pharm. 327 (2006) 36-44; DOI: 10.1016/j.ijpharm.2006.07.032.10.1016/j.ijpharm.2006.07.032
  90. 90. C. Gustafsson, H. Lennholm, T. Iversen and C. Nyström, Comparison of solid-state NMR and isothermal microcalorimetry in the assessment of the amorphous component of lactose, Int. J. Pharm. 174 (1998) 243-252; DOI: 10.1016/S0378-5173(98)00272-5.10.1016/S0378-5173(98)00272-5
  91. 91. M. Mirmehrabi, S. Rohani, K. S. K. Murthy and B. Radatus, Characterization of tautomeric forms of ranitidine hydrochloride: thermal analysis, solid-state NMR, X-ray, J. Cryst. Growth 260 (2004) 517-526; DOI: 10.1016/j.jcrysgro.2003.08.061.10.1016/j.jcrysgro.2003.08.061
  92. 92. D. C. Apperley, R. A. Fletton, R. K. Harris, R. W. Lancaster, S. Tavener and T. L. Threlfall, Sulfathiazole polymorphism studied by magic-angle spinning NMR, J. Pharm. Sci. 88 (1999) 1275-1280; DOI: 10.1021/js990175a.10.1021/js990175a
  93. 93. D. C. Apperley, R. K. Harris, T. Larsson and T. Malmstrom, Quantitative nuclear magnetic resonance analysis of solid formoterol fumarate and its dihydrate, J. Pharm. Sci. 92 (2003) 2487-2494; DOI: 10.1002/jps.10500.10.1002/jps.10500
  94. 94. P. A. Tishmack, D. E. Bugay and S. R. Byrn, Solid-state nuclear magnetic resonance spectroscopy- pharmaceutical applications, J. Pharm. Sci. 92 (2003) 441-474; DOI: 10.1002/jps.10307.10.1002/jps.10307
  95. 95. A. Gombás, I. Antal, P. Szabó-Révész, S. Marton and I. Erõs, Quantitative determination of crystallinity of alpha-lactose monohydrate by near Infrared Spectroscopy (NIRS), Int. J. Pharm. 256 (2003) 25-32; DOI: 10.1016/S0378-5173(03)00059-0.10.1016/S0378-5173(03)00059-0
  96. 96. P. Debenedetti, Metastable Liquids: Concepts and Principles, Princeton University Press, Chichester 1996.10.1515/9780691213941
  97. 97. G. P. Johari, S. Ram, G. Astl and E. Mayer, Characterizing amorphous and microcrystalline solids by calorimetry, J. Non-Cryst Solids 116 (1990) 282-285; DOI: 10.1016/0022-3093(90)90703-O.10.1016/0022-3093(90)90703-O
  98. 98. S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley and A. Newman, Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns, Pharm. Res. 23 (2006) 2333-2349; DOI: 10.1007/s11095-006-9086-2.10.1007/s11095-006-9086-2
  99. 99. S. J. L. Billinge and M. G. Kanatzidis, Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions, Chem. Commun. 7 (2004) 749-760; DOI: 10.1039/b309577k..
  100. 100. A. S. Masadeh, E. S. Bozin, C. L. Farrow, G. Paglia, P. Juhas, S. J. L. Billinge, A. Karkamkar and M. G. Kanatzidis, Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis, Phys. Rev. B 76 (2007); DOI: 10. 1103/PhysRevB.76.115413.
  101. 101. T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks, Pergamon Press, Oxford 2003, pp. 25-101.10.1016/S1369-7021(03)00635-7
  102. 102. T. Proffen, S. Billinge, T. Egami and D. Louca, Structural analysis of complex materials using the atomic pair distribution function - a practical guide, Z. Kristallogr. 218 (2003) 132-143; DOI: 10.1524/zkri.218.2.132.20664.10.1524/zkri.218.2.132.20664
  103. 103. L. Tarasov and B. E. Warren, X-ray diffraction study of liquid sodium, J. Chem. Phys. 4 (1936) 236-238; DOI: 10.1063/1.1749828.10.1063/1.1749828
  104. 104. B. Warren, H. Krutter and O. Morningstar, Fourier-analysis of X-ray-patterns of vitreous SiO2 and B2O3, J. Am. Ceram. Soc. 75 (1992) 11-15.10.1111/j.1151-2916.1992.tb05433.x
  105. 105. F. Zernike and J. A. Prins, Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung, Z. Physik 41 (1927) 184-194; DOI: 10.1007/BF01391926.10.1007/BF01391926
  106. 106. F. Atassi, C. Mao, A. S. Masadeh and S. R. Byrn, Solid-state characterization of amorphous and mesomorphous calcium ketoprofen, J. Pharm. Sci. 99 (2009) 3684-3697; DOI: 10.1002/jps.21925.10.1002/jps.2192519780126
  107. 107. S. Bates, R. C. Kelly, I. Ivanisevic, P. Schields, G. Zografi and A. W. Newman, Assessment of defects and amorphous structure produced in raffinose pentahydrate upon dehydration, J. Pharm. Sci. 96 (2007) 1418-1433; DOI: 10.1002/jps.20944.10.1002/jps.2094417455351
  108. 108. A. Heinz, C. J. Strachan, F. Atassi, K. C. Gordon and T. Rades, Characterizing an amorphous system exhibiting trace crystallinity: A case study with saquinavir, Crys. Growth Des. 8 (2008) 119-127; DOI: 10.1021/cg700912q.10.1021/cg700912q
  109. 109. A. Sheth, S. Bates, F. Muller and D. Grant, Polymorphism in piroxicam, Cryst. Growth Des. 4 (2004) 1091-1098; DOI: 10.1021/cg049876y.10.1021/cg049876y
  110. 110. A. Sheth, S. Bates, F. Muller and D. Grant, Local structure in amorphous phases of piroxicam from powder X-ray diffractometry, Cryst. Growth Des. 5 (2005) 571-578; DOI: 10.1021/cg049757i.10.1021/cg049757i
  111. 111. M. D. Moore, A. M. Steinbach, I. S. Buckner and P. L. Wildfong, A structural investigation into the compaction behavior of pharmaceutical composites using powder X-ray diffraction and total scattering analysis, Pharm. Res. 26 (2009) 2429-2437; DOI: 10.1007/s11095-009-9954-7.10.1007/s11095-009-9954-719714452
  112. 112. A. Newman, D. Engers, S. Bates, I. Ivanisevic, R. C. Kelly and G. Zografi, Characterization of amorphous API: Polymer mixtures using X-ray powder diffraction, J. Pharm. Sci. 97 (2008) 4840-4856; DOI: 10.1002/jps.21352.10.1002/jps.2135218351626
  113. 113. K. Nollenberger, A. Gryczke, C. Meier, J. Dressman, M. U. Schmidt and S. Brühne, Pair distribution function X-ray analysis explains dissolution characteristics of felodipine melt extrusion products, J. Pharm. Sci. 98 (2009) 1476-1486; DOI: 10.1002/jps.21534.10.1002/jps.2153418752290
  114. 114. P. Robinson, HyperDSC, Speed DSC Technique, ESTAC8 Abstract Book, Barcelona (August 25-29, 2002), p. 101.
  115. 115. Y. Roos, Melting and glass transitions of low molecular weight carbohydrates, Carbohyd. Res.238 (1993) 39-48; DOI: 10.1016/0008-6215(93)87004-C.10.1016/0008-6215(93)87004-C
  116. 116. M. Brown, Introduction to Thermal Analysis: Techniques and Applications, Kluwer Academic Publishers, Amsterdam 2001.
  117. 117. Perkin Elmer, Thermal Analysis Newsletter, Application Example PETAN-51, Norwalk 2000.
  118. 118. P. Claudy, M. Siniti and J. El Hajri, Thermodynamic study of the glass relaxation phenomena - DSC study of annealing of maltitol glass, J. Therm. Anal. Calorim. 68 (2002) 251-264.10.1023/A:1014973719280
  119. 119. M. J. Pikal, A. L. Lukes, J. E. Lang and K. Gaines, Quantitative crystallinity determinations for b-lactam antibiotics by solution calorimetry: Correlations with stability, J. Pharm. Sci. 67 (1978) 767-773; DOI: 10.1002/jps.2600670609.10.1002/jps.2600670609
  120. 120. D. Gao and J. Rytting, Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients, Int. J. Pharm. 151 (1997) 183-192; DOI: 10.1016/S0378-5173(97)04895-3.10.1016/S0378-5173(97)04895-3
  121. 121. S. E. Hogan and G. Buckton, The quantification of small degrees of disorder in lactose using solution calorimetry, Int. J. Pharm. 207 (2000) 57-64; DOI: 10.1016/S0378-5173(00)00527-5.10.1016/S0378-5173(00)00527-5
  122. 122. K. C. Thompson, J. P. Draper, M. J. Kaufman and G. S. Brenner, Characterization of the crystallinity of drugs: B02669, a case study, Pharm. Res. 11 (1994) 1362-1365; DOI: 10.1023/A:101 8919201058.
  123. 123. G. H. Ward and R. K. Schultz, Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability, Pharm. Res. 12 (1995) 773-779; DOI: 10.1023/A:1016232230 638.
  124. 124. P. Harjunen, V. P. Lehto, M. Koivisto, E. Levonen, P. Paronen and K. Järvinen, Determination of amorphous content of lactose samples by solution calorimetry, Drug Dev. Ind. Pharm. 30 (2004) 809-815; DOI: 10.1081/DDC-200030302.10.1081/DDC-200030302
  125. 125. R. W. Douglas and G. A. Jones, An apparatus for the determination of small changes in density, J. Sci. Instrum. 24 (1947) 72; DOI: 10.1088/0950-7671/24/3/304.10.1088/0950-7671/24/3/304
  126. 126. J. Pelsmaekers and S. Amelinckx, Simple apparatus for comparative density measurements, Rev. Sci. Instr. 32 (1961) 828-830; DOI: 10.1063/1.1717522.10.1063/1.1717522
  127. 127. R. Suryanarayanan, Evaluation of two concepts of crystallinity using calcium gluceptate as a model compound, Int. J. Pharm. 24 (1985) 1-17; DOI: 10.1016/0378-5173(85)90140-1.10.1016/0378-5173(85)90140-1
  128. 128. G. M. Venkatesh, M. E. Barnett, C. Owusu-Fordjour and M. Galop, Detection of low levels of the amorphous phase in crystalline pharmaceutical materials by thermally stimulated current spectrometry, Pharm. Res. 18 (2001) 98-103, DOI: 10.1023/A:1011087012826.10.1023/A:1011087012826
  129. 129. R. Huttenrauch, Molecular galenics as the basis of modern drug formation, Acta Pharm. Technol. (Suppl.) 6 (1978) 55-127.
  130. 130. A. Salekigerhardt, C. Ahlneck and G. Zografi, Assessment of disorder in crystalline solids, Int. J. Pharm. 101 (1994) 237-247; DOI: 10.1016/0378-5173(94)90219-4.10.1016/0378-5173(94)90219-4
  131. 131. P. M. Young, H. Chiou, T. Tee, D. Traini, H.-K. Chan, F. Thielmann and D. Burnett, The use of organic vapor sorption to determine low levels of amorphous content in processed pharmaceutical powders, Drug Dev. Ind. Pharm. 33 (2007) 91-97; DOI: 10.1080/03639040600969991.10.1080/03639040600969991
  132. 132. J. Vollenbroek, G. A. Hebbink, S. Ziffels and H. Steckel, Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms, Int. J. Pharm. 395 (2010) 62-70; DOI: 10.1016/j.ijpharm.2010.04.035.10.1016/j.ijpharm.2010.04.035
  133. 133. M. Kunaver, J. Zadnik and O. Planinsek, Inverse gas chromatography-A different approach to characterization of solids and liquids, Acta Chim. Slov. 51 (2004) 373-394.
  134. 134. A. Voelkel, B. Strzemiecka, K. Adamska and K. Milczewska, Inverse gas chromatography as a source of physicochemical data, J. Chromatogr. A 1216 (2009) 1551-1566; DOI: 10.1016/j.chroma. 2008.10.096.
  135. 135. S. P. Chamarthy and R. Pinal, The nature of crystal disorder in milled pharmaceutical materials, Colloid. Surfaces A 331 (2008) 68-75; DOI: 10.1016/j.colsurfa.2008.06.040.10.1016/j.colsurfa.2008.06.040
  136. 136. O. Planinsek, J. Zadnik, M. Kunaver, S. Srcic and A. Godec, Structural evolution of indomethacin particles upon milling: time-resolved quantification and localization of disordered structure studied by IGC and DSC, J. Pharm. Sci. 99 (2010) 1968-1981; DOI: 10.1002/jps.21986.10.1002/jps.21986
  137. 137. M. Otsuka and N. Kaneniwa, Effect of environment on crystallinity and chemical stability in solid-state of ground cephalotin sodium during storage, Drug Dev. Ind. Pharm. 17 (1990) 909-918; DOI: 10.3109/03639049109040828.10.3109/03639049109040828
  138. 138. H. Konno and L. S. Taylor, Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine, J. Pharm. Sci. 95 (2006) 2692-2705; DOI: 10.1002/ jps.20697.10.1002/jps.20697
  139. 139. X. C. Tang, M. J. Pikal and L. S. Taylor, The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers, Pharm. Res. 19 (2002) 484-490; DOI: 10.1023/A:1015199713635.10.1023/A:1015199713635
  140. 140. L. Mackin, S. Sartnurak, I. Thomas and S. Moore, The impact of low levels of amorphous material, Int. J. Pharm. 231 (2002) 213-226; DOI: 10.1016/S0378-5173(01)00880-8.10.1016/S0378-5173(01)00880-8
  141. 141. J. J. Seyer, P. E. Luner and M. S. Kemper, Application of diffuse reflectance near-infrared spectroscopy for determination of crystallinity, J. Pharm. Sci. 89 (2000) 1305-1316; DOI: 10.1002/ 1520-6017(200010)89:10<1305::AID-JPS8>3.0.CO;2-Q.10.1002/1520-6017(200010)89:10<;1305::AID-JPS8>3.3.CO;2-H
  142. 142. S. J. Bai, M. Rani, R. Suryanarayanan, J. F. Carpenter, R. Nayar and M. C. Manning, Quantification of glycine crystallinity by near-infrared (NIR) spectroscopy, J. Pharm. Sci. 93 (2004) 2439-2447; DOI:10.1002/jps.20153.10.1002/jps.20153
  143. 143. P. Aldridge, C. Evans, H. Ward, S. Colgan, N. Boyer and P. Gemperline, Near-IR detection of polymorphism and process-related substances, Anal. Chem. 68 (1996) 997-1002; DOI: 10.1021/ ac950993x.10.1021/ac950993x
  144. 144. S. Hogan and G. Buckton, The application of near infrared spectroscopy and dynamic vapor sorption to quantify low amorphous contents of crystalline lactose, Pharm. Res. 18 (2001) 112-116; DOI: 10.1023/A:1011091113734.10.1023/A:1011091113734
  145. 145. G. Buckton, E. Yonemochi, J. Hammond and A. Moffat, The use of near infra-red spectroscopy to detect changes in the form of amorphous and crystalline lactose, Int. J. Pharm. 168 (1998) 231-241; DOI: 10.1016/S0378-5173(98)00095-7.10.1016/S0378-5173(98)00095-7
  146. 146. M. Otsuka and H. Tanabe, Stability test for amorphous materials in humidity controlled 96- -well plates by near-infrared spectroscopy, Drug Dev. Ind. Pharm. 38 (2012) 380-385; DOI: 10. 3109/03639045.2011.608680.10.3109/03639045.2011.60868021942281
  147. 147. M. Otsuka, F. Kato and Y. Matsuda, Comparative evaluation of the degree of indomethacin crystallinity by chemoinfometrical Fourier-transformed near-infrared spectroscopy and conventional powder X-ray diffractometry, AAPS PharmSci 2 (2000) E9; DOI: 10.1208/ps020109.10.1208/ps020109275100411741225
  148. 148. P. Vandenabeele, Practical Raman Spectroscopy, Wiley, Chichosten 2013, pp. 23-80.10.1002/9781119961284
  149. 149. P. Karmwar, K. Graeser, K. C. Gordon, C. J. Strachan and T. Rades, Effect of different preparation methods on the dissolution behaviour of amorphous indomethacin, Eur. J. Pharm. Biopharm.80 (2012) 459-464; DOI: 10.1016/j.ejpb.2011.10.006.10.1016/j.ejpb.2011.10.00622019529
  150. 150. J. P. Boetker, V. Koradia, T. Rades and J. Rantanen, Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes, Pharmaceutics 4 (2012) 93-103 DOI: 10.3390/pharmaceutics4010093.10.3390/pharmaceutics4010093383490924300182
  151. 151. M. Savolainen, K. Kogermann, A. Heinz, J. Aaltonen, L. Peltonen, C. Strachan and J. Yliruusi, Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy, Eur. J. Pharm. Biopharm. 71 (2009) 71-79; DOI: 10.1016/j.ejpb. 2008.06.001.
  152. 152. S. Hasegawa, T. Hamaura, N. Furuyama, S. Horikawa, A. Kusai, E. Yonemochi and K. Terada, Uniformity and physical states of troglitazone in solid dispersions determined by electron probe microanalysis and microthermal analysis, Int. J. Pharm. 280 (2004) 39-46; DOI: 10.1016/j. ijpharm.2004.04.024.
  153. 153. K. Kawakami, T. Numa and Y. Ida, Assessment of amorphous content by microcalorimetry, J. Pharm. Sci. 91 (2002) 417-423; DOI: 10.1002/jps.10017.10.1002/jps.1001711835201
  154. 154. G. Buckton, P. Darcy, D. Greenleaf and P. Holbrook, The use of isothermal microcalorimetry in the study of changes in crystallinity of spray-dried salbutamol sulphate, Int. J. Pharm. 116 (1995) 113-118; DOI: 10.1016/0378-5173(94)00322-V.10.1016/0378-5173(94)00322-V
  155. 155. L. E. Briggner, G. Buckton, K. Bystrom and P. Darcy, The use of isothermal microcalorimetry in the study of changes in crystallinity induced during the processing of powders, Int. J. Pharm.105 (1994) 125-135; DOI: 10.1016/0378-5173(94)90458-8.10.1016/0378-5173(94)90458-8
  156. 156. D. Giron, P. Remy, S. Thomas and E. Vilette, Quantitation of amorphicity by microcalorimetry, J. Therm. Anal. 48 (1997) 465-472; DOI: 10.1007/BF01979493.10.1007/BF01979493
  157. 157. J. Nishizawa, N. G. Hadjiconstantinou, G. Dimonte, P. S. Lomdahl, B. L. Holian and B. J. Alder, Pioneering work of THz wave and its application for molecular sciences, AIP Conference Proceedings708 (2004) 369-375. 10.1063/1.1764178
DOI: https://doi.org/10.2478/acph-2013-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 305 - 334
Published on: Oct 22, 2013
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2013 Tomaž Einfalt, Odon Planinšek, Klemen Hrovat, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons License.