Have a personal or library account? Click to login
Remediation of Nickel ion from wastewater by applying various techniques: a review Cover

Remediation of Nickel ion from wastewater by applying various techniques: a review

Open Access
|Feb 2020

References

  1. [1] C. Santhosh, V. Velmurugan, G. Jacob, S. K. Jeong, A. N. Grace, and A. Bhatnagar, “Role of nanomaterials in water treatment applications: a review,” Chemical Engineering Journal, vol. 306, pp. 1116-1137, 2016.10.1016/j.cej.2016.08.053
  2. [2] W. U. J. W. Supply and S. M. Programme, Progress on drinking water and sanitation: 2014 Update: World Health Organization, 2014.
  3. [3] M. M. A. Shirazi, A. Kargari, and M. J. A. Shirazi, “Direct contact membrane distillation for seawater desalination,” Desalination and Water Treatment, vol. 49, pp. 368-375, 2012.10.1080/19443994.2012.719466
  4. [4] H. S. Rai, M. S. Bhattacharyya, J. Singh, T. Bansal, P. Vats, and U. Banerjee, “Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment,” Critical reviews in environmental science and technology, vol. 35, pp. 219-238, 2005.10.1080/10643380590917932
  5. [5] X. Du, H. Zhang, X. Hao, G. Guan, and A. Abudula, “Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel (II) ions,” ACS applied materials & interfaces, vol. 6, pp. 9543-9549, 2014.10.1021/am501926u
  6. [6] O. Sadeghi, N. Tavassoli, M. Amini, H. Ebrahimzadeh, and N. Daei, “Pyridine-functionalized mesoporous silica as an adsorbent material for the determination of nickel and lead in vegetables grown in close proximity by electrothermal atomic adsorption spectroscopy,” Food Chemistry, vol. 127, pp. 364-368, 2011.10.1016/j.foodchem.2010.12.159
  7. [7] R. Sharma and B. Singh, “Removal of Ni (II) ions from aqueous solutions using modified rice straw in a fixed bed column,” Bioresource technology, vol. 146, pp. 519-524, 2013.10.1016/j.biortech.2013.07.146
  8. [8] K. Lascelles, L. Morgan, D. Nicholls, and D. Beyersmann, “Nickel compounds, Ullmann’s Encyclopedia of Industrial Chemistry,” ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.10.1002/14356007.a17_235.pub2
  9. [9] E. Denkhaus and K. Salnikow, “Nickel essentiality, toxicity, and carcinogenicity,” Critical reviews in oncology/hematology, vol. 42, pp. 35-56, 2002.10.1016/S1040-8428(01)00214-1
  10. [10] M. Vieira, A. A. Neto, M. Gimenes, and M. Da Silva, “Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay,” Journal of Hazardous Materials, vol. 177, pp. 362-371, 2010.10.1016/j.jhazmat.2009.12.04020042281
  11. [11] X. Zhang and X. Wang, “Adsorption and desorption of nickel (II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite,” PloS one, vol. 10, p. e0117077, 2015.10.1371/journal.pone.0117077431560125647398
  12. [12] R. G. Garrett, “Natural sources of metals to the environment,” Human and Ecological Risk Assessment, vol. 6, pp. 945-963, 2000.10.1080/10807030091124383
  13. [13] K. K. Das and V. Büchner, “Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid,” Reviews on environmental health, vol. 22, pp. 157-173, 2007.10.1515/REVEH.2007.22.2.15717894205
  14. [14] F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: a review,” Journal of environmental management, vol. 92, pp. 407-418, 2011.10.1016/j.jenvman.2010.11.011
  15. [15] D. Zamboulis, E. N. Peleka, N. K. Lazaridis, and K. A. Matis, “Metal ion separation and recovery from environmental sources using various flotation and sorption techniques,” Journal of Chemical Technology and Biotechnology, vol. 86, pp. 335-344, 2011.10.1002/jctb.2552
  16. [16] V. Coman, B. Robotin, and P. Ilea, “Nickel recovery/removal from industrial wastes: A review,” Resources, Conservation and Recycling, vol. 73, pp. 229-238, 2013.10.1016/j.resconrec.2013.01.019
  17. [17] S. R. Dhokpande, J. P. Kaware, and S. J. Kulkarni, “Research for removal of nickel from waste water-A Review,” International Journal of Science, Engineering and Technology Research, vol. 2, pp. 2162-2166, 2013.
  18. [18] A. Kaur and S. Sharma, “Removal of heavy metals from waste water by using various adsorbents-A review,” Indian Journal of Science and Technology, vol. 10, 2017.10.17485/ijst/2017/v10i34/117269
  19. [19] Y. Ku and I.-L. Jung, “Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide,” Water research, vol. 35, pp. 135-142, 2001.10.1016/S0043-1354(00)00098-1
  20. [20] M. A. Hashim, S. Mukhopadhyay, J. N. Sahu, and B. Sengupta, “Remediation technologies for heavy metal contaminated groundwater,” Journal of environmental management, vol. 92, pp. 2355-2388, 2011.10.1016/j.jenvman.2011.06.009
  21. [21] A. Özverdi and M. Erdem, “Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide,” Journal of hazardous materials, vol. 137, pp. 626-632, 2006.10.1016/j.jhazmat.2006.02.05116621248
  22. [22] I. Giannopoulou and D. Panias, “Copper and nickel recovery from acidic polymetallic aqueous solutions,” Minerals engineering, vol. 20, pp. 753-760, 2007.10.1016/j.mineng.2007.02.009
  23. [23] C. Sist and G. P. Demopoulos, “Nickel hydroxide precipitation from aqueous sulfate media,” JOM Journal of the Minerals, Metals and Materials Society, vol. 55, pp. 42-46, 2003.10.1007/s11837-003-0104-0
  24. [24] G. Escudero, E. Espinoza, and F. Rao, “Chemical Precipitation of Nickel Species from Waste Water,” International Research Journal of Pure and Applied Chemistry, vol. 15, p. 1, 2017.10.9734/IRJPAC/2017/37905
  25. [25] K. Tanong, L.-H. Tran, G. Mercier, and J.-F. Blais, “Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods,” Journal of cleaner production, vol. 148, pp. 233-244, 2017.10.1016/j.jclepro.2017.01.158
  26. [26] T. Subbaiah, S. Mallick, K. Mishra, K. Sanjay, and R. Das, “Electrochemical precipitation of nickel hydroxide,” Journal of power sources, vol. 112, pp. 562-569, 2002.10.1016/S0378-7753(02)00470-6
  27. [27] A. Dąbrowski, Z. Hubicki, P. Podkościelny, and E. Robens, “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method,” Chemosphere, vol. 56, pp. 91-106, 2004.10.1016/j.chemosphere.2004.03.006
  28. [28] T. A. Kurniawan, G. Y. Chan, W.-H. Lo, and S. Babel, “Physico–chemical treatment techniques for wastewater laden with heavy metals,” Chemical engineering journal, vol. 118, pp. 83-98, 2006.10.1016/j.cej.2006.01.015
  29. [29] F. Gode and E. Pehlivan, “Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature,” Journal of Hazardous Materials, vol. 136, pp. 330-337, 2006.10.1016/j.jhazmat.2005.12.021
  30. [30] A. Azimi, A. Azari, M. Rezakazemi, and M. Ansarpour, “Removal of heavy metals from industrial wastewaters: a review,” ChemBioEng Reviews, vol. 4, pp. 37-59, 2017.10.1002/cben.201600010
  31. [31] B. Alyüz and S. Veli, “Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins,” Journal of Hazardous Materials, vol. 167, pp. 482-488, 2009.10.1016/j.jhazmat.2009.01.006
  32. [32] P. S. Kumar, K. Ramakrishnan, and R. Gayathri, “Removal of nickel (II) from aqueous solutions by ceralite IR 120 cationic exchange resins,” J. Eng. Sci. Technol, vol. 5, pp. 232-243, 2010.
  33. [33] R. Dave, G. Dave, and V. Mishra, “REMOVAL OF NICKEL FROM ELETROPLATING WASTEWATER BY WEAKLY BASIC CHELATING ANION EXCHANGE RESINS: DOWEX 50x4, DOWEX 50x2 AND DOWEX M-4195,” Journal of Applied Sciences in Environmental Sanitation, vol. 6, 2011.
  34. [34] T. Zewail and N. Yousef, “Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed,” Alexandria Engineering Journal, vol. 54, pp. 83-90, 2015.10.1016/j.aej.2014.11.008
  35. [35] E. N. Peleka, G. P. Gallios, and K. A. Matis, “A perspective on flotation: a review,” Journal of Chemical Technology & Biotechnology, vol. 93, pp. 615-623, 2018.10.1002/jctb.5486
  36. [36] F. S. Hoseinian, B. Rezai, E. Kowsari, and M. Safari, “Kinetic study of Ni (II) removal using ion flotation: Effect of chemical interactions,” Minerals Engineering, vol. 119, pp. 212-221, 2018.10.1016/j.mineng.2018.01.028
  37. [37] F. M. Doyle and Z. Liu, “The effect of triethylenetetraamine (Trien) on the ion flotation of Cu 2+ and Ni 2+,” Journal of colloid and interface science, vol. 258, pp. 396-403, 2003.10.1016/S0021-9797(02)00092-9
  38. [38] Z. Liu and F. M. Doyle, “Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien),” Langmuir, vol. 25, pp. 8927-8934, 2009.10.1021/la900098g
  39. [39] A. Turtureanu, C. Georgescu, and L. Oprean, “Nickel removal from aqueous solutions by flotation with cationic collector. Determination of the optimum separation conditions,” relation, vol. 100, p. 1, 2008.
  40. [40] F. S. Hoseinian, M. Irannajad, and A. J. Nooshabadi, “Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters,” International Journal of Mineral Processing, vol. 143, pp. 131-137, 2015.10.1016/j.minpro.2015.07.006
  41. [41] M. Barakat, “New trends in removing heavy metals from industrial wastewater,” Arabian Journal of Chemistry, vol. 4, pp. 361-377, 2011.10.1016/j.arabjc.2010.07.019
  42. [42] D. S. Patil, S. M. Chavan, and J. U. K. Oubagaranadin, “A review of technologies for manganese removal from wastewaters,” Journal of Environmental Chemical Engineering, vol. 4, pp. 468-487, 2016.10.1016/j.jece.2015.11.028
  43. [43] M. Mohsen-Nia, P. Montazeri, and H. Modarress, “Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes,” Desalination, vol. 217, pp. 276-281, 2007.10.1016/j.desal.2006.01.043
  44. [44] U. Ipek, “Removal of Ni (II) and Zn (II) from an aqueous solutionby reverse osmosis,” Desalination, vol. 174, pp. 161-169, 2005.10.1016/j.desal.2004.09.009
  45. [45] J. Landaburu-Aguirre, E. Pongrácz, A. Sarpola, and R. L. Keiski, “Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration,” Separation and purification technology, vol. 88, pp. 130-137, 2012.10.1016/j.seppur.2011.12.025
  46. [46] G. Borbély and E. Nagy, “Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater,” Desalination, vol. 240, pp. 218-226, 2009.10.1016/j.desal.2007.11.073
  47. [47] A. Kryvoruchko, L. Yurlova, and B. Kornilovich, “Purification of water containing heavy metals by chelating-enhanced ultrafiltration,” Desalination, vol. 144, pp. 243-248, 2002.10.1016/S0011-9164(02)00319-3
  48. [48] Z. Murthy and L. B. Chaudhari, “Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters,” Journal of Hazardous Materials, vol. 160, pp. 70-77, 2008.10.1016/j.jhazmat.2008.02.08518400379
  49. [49] Z. Murthy and L. B. Chaudhari, “Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane,” Desalination, vol. 247, pp. 610-622, 2009.10.1016/j.desal.2008.10.009
  50. [50] L. Yurlova, A. Kryvoruchko, and B. Kornilovich, “Removal of Ni (II) ions from wastewater by micellar-enhanced ultrafiltration,” Desalination, vol. 144, pp. 255-260, 2002.10.1016/S0011-9164(02)00321-1
  51. [51] R. Molinari, T. Poerio, and P. Argurio, “Selective separation of copper (II) and nickel (II) from aqueous media using the complexation–ultrafiltration process,” Chemosphere, vol. 70, pp. 341-348, 2008.10.1016/j.chemosphere.2007.07.041
  52. [52] J.-J. Qin, M.-N. Wai, M.-H. Oo, and F.-S. Wong, “A feasibility study on the treatment and recycling of a wastewater from metal plating,” Journal of Membrane Science, vol. 208, pp. 213-221, 2002.10.1016/S0376-7388(02)00263-6
  53. [53] A. W. Mohammad, R. Othaman, and N. Hilal, “Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating,” Desalination, vol. 168, pp. 241-252, 2004.10.1016/j.desal.2004.07.004
  54. [54] K. A. Krishnan, K. Sreejalekshmi, and R. Baiju, “Nickel (II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith,” Bioresource technology, vol. 102, pp. 10239-10247, 2011.10.1016/j.biortech.2011.08.069
  55. [55] V. Gupta, “Application of low-cost adsorbents for dye removal–A review,” Journal of environmental management, vol. 90, pp. 2313-2342, 2009.10.1016/j.jenvman.2008.11.017
  56. [56] M. Zhou and L. Lei, “Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor,” Electrochimica acta, vol. 51, pp. 4489-4496, 2006.10.1016/j.electacta.2005.12.028
  57. [57] E. Pehlivan and G. Arslan, “Removal of metal ions using lignite in aqueous solution—Low cost biosorbents,” Fuel processing technology, vol. 88, pp. 99-106, 2007.10.1016/j.fuproc.2006.09.004
  58. [58] A. Ewecharoen, P. Thiravetyan, E. Wendel, and H. Bertagnolli, “Nickel adsorption by sodium polyacrylate-grafted activated carbon,” Journal of Hazardous Materials, vol. 171, pp. 335-339, 2009.10.1016/j.jhazmat.2009.06.008
  59. [59] R. Sudha, K. Srinivasan, and P. Premkumar, “Removal of nickel (II) from aqueous solution using Citrus Limettioides peel and seed carbon,” Ecotoxicology and environmental safety, vol. 117, pp. 115-123, 2015.10.1016/j.ecoenv.2015.03.025
  60. [60] A. Keränen, T. Leiviskä, A. Salakka, and J. Tanskanen, “Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon,” Desalination and Water Treatment, vol. 53, pp. 2645-2654, 2015.10.1080/19443994.2013.868832
  61. [61] K. Kadirvelu, K. Thamaraiselvi, and C. Namasivayam, “Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith,” Separation and purification technology, vol. 24, pp. 497-505, 2001.10.1016/S1383-5866(01)00149-6
  62. [62] P. M. Choksi and V. Y. Joshi, “Adsorption kinetic study for the removal of nickel (II) and aluminum (III) from an aqueous solution by natural adsorbents,” Desalination, vol. 208, pp. 216-231, 2007.10.1016/j.desal.2006.04.081
  63. [63] G. Wang, A. Li, and M. Li, “Sorption of nickel ions from aqueous solutions using activated carbon derived from walnut shell waste,” Desalination and Water Treatment, vol. 16, pp. 282-289, 2010.10.5004/dwt.2010.1863
  64. [64] M. Betancur, P. Bonelli, J. Velásquez, and A. Cukierman, “Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: effect of demineralisation,” Bioresource technology, vol. 100, pp. 1130-1137, 2009.10.1016/j.biortech.2008.08.023
  65. [65] A. Bhatnagar and A. Minocha, “Biosorption optimization of nickel removal from water using Punica granatum peel waste,” Colloids and Surfaces B: Biointerfaces, vol. 76, pp. 544-548, 2010.10.1016/j.colsurfb.2009.12.016
  66. [66] G. Crini, “Non-conventional low-cost adsorbents for dye removal: a review,” Bioresource technology, vol. 97, pp. 1061-1085, 2006.10.1016/j.biortech.2005.05.001
  67. [67] A. Ewecharoen, P. Thiravetyan, and W. Nakbanpote, “Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith,” Chemical engineering journal, vol. 137, pp. 181-188, 2008.10.1016/j.cej.2007.04.007
  68. [68] A. Thevannan, R. Mungroo, and C. H. Niu, “Biosorption of nickel with barley straw,” Bioresource technology, vol. 101, pp. 1776-1780, 2010.10.1016/j.biortech.2009.10.035
  69. [69] M. N. Zafar, I. Aslam, R. Nadeem, S. Munir, U. A. Rana, and S. U.-D. Khan, “Characterization of chemically modified biosorbents from rice bran for biosorption of Ni (II),” Journal of the Taiwan Institute of Chemical Engineers, vol. 46, pp. 82-88, 2015.10.1016/j.jtice.2014.08.034
  70. [70] P. S. Kumar, S. Ramalingam, S. D. Kirupha, A. Murugesan, T. Vidhyadevi, and S. Sivanesan, “Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design,” Chemical Engineering Journal, vol. 167, pp. 122-131, 2011.10.1016/j.cej.2010.12.010
  71. [71] E. Malkoc and Y. Nuhoglu, “Nickel (II) adsorption mechanism from aqueous solution by a new adsorbent—Waste acorn of Quercus ithaburensis,” Environmental Progress & Sustainable Energy, vol. 29, pp. 297-306, 2010.10.1002/ep.10412
  72. [72] B. Bayat, “Comparative study of adsorption properties of Turkish fly ashes: I. The case of nickel (II), copper (II) and zinc (II),” Journal of Hazardous Materials, vol. 95, pp. 251-273, 2002.10.1016/S0304-3894(02)00140-1
  73. [73] V. C. Srivastava, I. D. Mall, and I. M. Mishra, “Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash,” Chemical engineering journal, vol. 117, pp. 79-91, 2006.10.1016/j.cej.2005.11.021
  74. [74] Y. Hannachi, N. A. Shapovalov, and A. Hannachi, “Adsorption of nickel from aqueous solution by the use of low-cost adsorbents,” Korean journal of chemical engineering, vol. 27, pp. 152-158, 2010.10.1007/s11814-009-0303-7
  75. [75] H. Z. Mousavi and S. Seyedi, “Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater,” International Journal of Environmental Science & Technology, vol. 8, pp. 195-202, 2011.10.1007/BF03326209
  76. [76] F. M. El-Dars, M. A. Elngar, S. T. Abdel-Rahim, N. El-Hussiny, and M. Shalabi, “Kinetic of nickel (II) removal from aqueous solution using different particle size of water-cooled blast furnace slag,” Desalination and Water Treatment, vol. 54, pp. 769-778, 2015.10.1080/19443994.2014.883578
  77. [77] E. D. van Hullebusch, A. Peerbolte, M. H. Zandvoort, and P. N. Lens, “Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction,” Chemosphere, vol. 58, pp. 493-505, 2005.10.1016/j.chemosphere.2004.09.017
  78. [78] M. G. da Fonseca, M. M. de Oliveira, and L. N. Arakaki, “Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral,” Journal of Hazardous Materials, vol. 137, pp. 288-292, 2006.10.1016/j.jhazmat.2006.02.001
  79. [79] F. Uddin, “Clays, nanoclays, and montmorillonite minerals,” Metallurgical and Materials Transactions A, vol. 39, pp. 2804-2814, 2008.10.1007/s11661-008-9603-5
  80. [80] Ö. Yavuz, Y. Altunkaynak, and F. Güzel, “Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite,” Water research, vol. 37, pp. 948-952, 2003.10.1016/S0043-1354(02)00409-8
  81. [81] C. O. Ijagbemi, M.-H. Baek, and D.-S. Kim, “Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni 2+ removal: Equilibrium, kinetics, thermodynamics and regeneration studies,” Journal of Hazardous Materials, vol. 174, pp. 746-755, 2010.10.1016/j.jhazmat.2009.09.11519833431
  82. [82] S. Yang, J. Li, Y. Lu, Y. Chen, and X. Wang, “Sorption of Ni (II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature,” Applied Radiation and Isotopes, vol. 67, pp. 1600-1608, 2009.10.1016/j.apradiso.2009.03.118
  83. [83] E. Katsou, S. Malamis, K. J. Haralambous, and M. Loizidou, “Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater,” Journal of Membrane Science, vol. 360, pp. 234-249, 2010.10.1016/j.memsci.2010.05.020
  84. [84] A. Barati, M. Asgari, T. Miri, and Z. Eskandari, “Removal and recovery of copper and nickel ions from aqueous solution by poly (methacrylamideco-acrylic acid)/montmorillonite nanocomposites,” Environmental Science and Pollution Research, vol. 20, pp. 6242-6255, 2013.10.1007/s11356-013-1672-3
  85. [85] N. Alandis, O. Aldayel, W. Mekhemer, J. Hefne, and H. Jokhab, “Thermodynamic and kinetic studies for the adsorption of Fe (III) and Ni (II) ions from aqueous solution using natural bentonite,” Journal of dispersion science and technology, vol. 31, pp. 1526-1534, 2010.10.1080/01932690903294097
  86. [86] Z.-r. Liu and S.-q. Zhou, “Adsorption of copper and nickel on Na-bentonite,” Process safety and environmental protection, vol. 88, pp. 62-66, 2010.10.1016/j.psep.2009.09.001
  87. [87] C. Martínez and J. Pérez-Pariente, “Zeolites and ordered porous solids,” in 3rd FEZA School on Zeolites: fundamentals and applications”, ed: Editorial Universitat Politecnica de Valencia Valencia, 2011.
  88. [88] M. Panayotova and B. Velikov, “Influence of zeolite transformation in a homoionic form on the removal of some heavy metal ions from wastewater,” Journal of Environmental Science and Health, Part A, vol. 38, pp. 545-554, 2003.10.1081/ESE-120016916
  89. [89] N. Rajic, D. Stojakovic, M. Jovanovic, N. Z. Logar, M. Mazaj, and V. Kaucic, “Removal of nickel (II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite,” Applied Surface Science, vol. 257, pp. 1524-1532, 2010.10.1016/j.apsusc.2010.08.090
  90. [90] S. Kocaoba, Y. Orhan, and T. Akyüz, “Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite,” Desalination, vol. 214, pp. 1-10, 2007.10.1016/j.desal.2006.09.023
  91. [91] S. Çoruh and O. N. Ergun, “Ni2+ removal from aqueous solutions using conditioned clinoptilolites: Kinetic and isotherm studies,” Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, vol. 28, pp. 162-172, 2009.10.1002/ep.10316
  92. [92] M. Sprynskyy, B. Buszewski, A. P. Terzyk, and J. Namieśnik, “Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite,” Journal of colloid and interface science, vol. 304, pp. 21-28, 2006.10.1016/j.jcis.2006.07.06816989853
  93. [93] K. Hui, C. Y. H. Chao, and S. Kot, “Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash,” Journal of Hazardous Materials, vol. 127, pp. 89-101, 2005.10.1016/j.jhazmat.2005.06.027
  94. [94] S. Kumar, W. Ahlawat, G. Bhanjana, S. Heydarifard, M. M. Nazhad, and N. Dilbaghi, “Nanotechnology-based water treatment strategies,” Journal of nanoscience and nanotechnology, vol. 14, pp. 1838-1858, 2014.10.1166/jnn.2014.9050
  95. [95] S. Yang, J. Li, D. Shao, J. Hu, and X. Wang, “Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA,” Journal of Hazardous Materials, vol. 166, pp. 109-116, 2009.10.1016/j.jhazmat.2008.11.003
  96. [96] D. Schmidt, D. Shah, and E. P. Giannelis, “New advances in polymer/layered silicate nanocomposites,” Current Opinion in Solid State and Materials Science, vol. 6, pp. 205-212, 2002.10.1016/S1359-0286(02)00049-9
  97. [97] T. A. Kurniawan, M. E. Sillanpää, and M. Sillanpää, “Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems,” Critical reviews in environmental science and technology, vol. 42, pp. 1233-1295, 2012.10.1080/10643389.2011.556553
  98. [98] B. Bhushan, Springer handbook of nanotechnology: Springer Science & Business Media, 2010.10.1007/978-3-642-02525-9
  99. [99] I. Ali, “New generation adsorbents for water treatment,” Chemical reviews, vol. 112, pp. 5073-5091, 2012.10.1021/cr300133d
  100. [100] M. M. Doroodmand, Z. Tahvildar, and M. H. Sheikhi, “Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Filter for Water Treatment Process,” Science of Advanced Materials, vol. 4, pp. 1085-1095, 2012.10.1166/sam.2012.1395
  101. [101] M. I. Kandah and J.-L. Meunier, “Removal of nickel ions from water by multi-walled carbon nanotubes,” Journal of Hazardous Materials, vol. 146, pp. 283-288, 2007.10.1016/j.jhazmat.2006.12.019
  102. [102] C. Lu and C. Liu, “Removal of nickel (II) from aqueous solution by carbon nanotubes,” Journal of Chemical Technology and Biotechnology, vol. 81, pp. 1932-1940, 2006.10.1002/jctb.1626
  103. [103] M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, and M. J. Parnian, “Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution,” Chemical engineering journal, vol. 220, pp. 237-243, 2013.10.1016/j.cej.2013.01.021
  104. [104] M. A. Adolph, Y. M. Xavier, P. Kriveshini, and K. Rui, “Phosphine functionalised multiwalled carbon nanotubes: A new adsorbent for the removal of nickel from aqueous solution,” Journal of Environmental Sciences, vol. 24, pp. 1133-1141, 2012.10.1016/S1001-0742(11)60880-2
  105. [105] Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, and J. Ma, “Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater,” Chemical Engineering Journal, vol. 175, pp. 1-7, 2011.10.1016/j.cej.2010.08.010
  106. [106] G. Chen, “Electrochemical technologies in wastewater treatment,” Separation and purification technology, vol. 38, pp. 11-41, 2004.10.1016/j.seppur.2003.10.006
  107. [107] L. Koene and L. Janssen, “Removal of nickel from industrial process liquids,” Electrochimica acta, vol. 47, pp. 695-703, 2001.10.1016/S0013-4686(01)00750-2
  108. [108] M. Y. Mollah, P. Morkovsky, J. A. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, vol. 114, pp. 199-210, 2004.10.1016/j.jhazmat.2004.08.00915511592
  109. [109] I. Heidmann and W. Calmano, “Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Cr (VI) present in aqueous solutions by aluminium electrocoagulation,” Journal of Hazardous Materials, vol. 152, pp. 934-941, 2008.10.1016/j.jhazmat.2007.07.068
  110. [110] I. Kabdaşlı, T. Arslan, T. Ölmez-Hancı, I. Arslan-Alaton, and O. Tünay, “Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes,” Journal of Hazardous Materials, vol. 165, pp. 838-845, 2009.10.1016/j.jhazmat.2008.10.065
  111. [111] F. Akbal and S. Camcı, “Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation,” Desalination, vol. 269, pp. 214-222, 2011.10.1016/j.desal.2010.11.001
  112. [112] U. T. Un and S. E. Ocal, “Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation,” International Journal of Environmental Science and Development, vol. 6, p. 425, 2015.10.7763/IJESD.2015.V6.630
  113. [113] T. U. A. Current, “Removal of nickel from drinking water by electrocoagulation technique using alternating current,” Current Research in Chemistry, vol. 4, pp. 41-50, 2012.10.3923/crc.2012.41.50
  114. [114] S. Vasudevan, J. Lakshmi, and G. Sozhan, “Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water,” Environmental Science and Pollution Research, vol. 19, pp. 2734-2744, 2012.10.1007/s11356-012-0773-8
  115. [115] M. Belkacem, M. Khodir, and S. Abdelkrim, “Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique,” Desalination, vol. 228, pp. 245-254, 2008.10.1016/j.desal.2007.10.013
  116. [116] K. Dermentzis, “Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization,” Journal of Hazardous Materials, vol. 173, pp. 647-652, 2010.10.1016/j.jhazmat.2009.08.133
  117. [117] N. Tzanetakis, W. Taama, K. Scott, R. Jachuck, R. Slade, and J. Varcoe, “Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt,” Separation and Purification Technology, vol. 30, pp. 113-127, 2003.10.1016/S1383-5866(02)00139-9
Language: English
Page range: 1 - 15
Published on: Feb 24, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Ameet Kumar, Aamna Balouch, Ashfaque Ahmed Pathan, Abdullah, Muhammad Saqaf Jagirani, Ali Muhammad Mahar, Muneeba Zubair, Benazir Laghari, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.