Have a personal or library account? Click to login
Factors Affecting Biocementation Process by Micp in Soils Cover

Factors Affecting Biocementation Process by Micp in Soils

By: Mariola WASIL  
Open Access
|Sep 2025

References

  1. DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197–210.
  2. Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112–117.
  3. Cheng L., & Shahin M. A. (2016). Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385.
  4. van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175.
  5. Ivanov, V., & Chu, J. (2008) Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Reviews in Environmental Science and Bio/Technology, 7, 139–153.
  6. Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique, 63(4), 331–339.
  7. Jiang, N., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Geotechnique, 67, 42–55.
  8. Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423.
  9. Boquet, E., Boronat, A. & Ramos-Cormenzana, A. Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon. Nature 246, 527–529 (1973).
  10. Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and environmental microbiology, 69(8), 4901–4909.
  11. Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9–21.
  12. Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013) Engineered applications of ureolytic biomineralization: a review, Biofouling, 29(6), 715–733.
  13. Mujah, D., Shahin, M. A., & Cheng, L. (2016). State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, Geomicrobiology Journal, 34(6), 524–537.
  14. Ferris, F., Phoenix, V., Fujita, Y., & Smith, R. (2004). Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochimica et Cosmochimica Acta, 68(8), 1701–1710.
  15. Dhami N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314.
  16. Seifan, M., Samani, A. K., & Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100(6), 2591–2602.
  17. Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11), 2396.
  18. Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571.
  19. DeJong, J. T., Fritzges, M.B., & Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1381–1392.
  20. Anbu, P., Kang, C., Shin, Y., & So, J. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26.
  21. Rajasekar, A., Wilkinson, S., & Moy, C. K. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environmental Science and Ecotechnology, 6, 100096.
  22. Zha, F., Wang, H., Kang, B., Liu, C., Xu, L., & Tan, X. (2021). Improving the strength and leaching characteristics of Pb-contaminated silt through MICP. Crystals, 11(11), 1303.
  23. Li, X., Wang, Y., Tang, J., & Li, K. (2022). Removal behavior of heavy metals from aqueous solutions via microbially induced carbonate precipitation driven by acclimatized Sporosarcina pasteurii. Applied Sciences, 12(19), 9958.
  24. Erdmann, N., de Payrebrune, K. M., Ulber, R., & Strieth, D. (2022). Optimizing compressive strength of sand treated with MICP using response surface methodology. SN Applied Sciences, 4, 282.
  25. Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67.
  26. Taharia, M., Dey, D., Das, K., Sukul, U., Chen, J., Banerjee, P., Dey, G., Sharma, R. K., Lin, P., & Chen, C. (2024). Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. Ecotoxicology and Environmental Safety, 271, 115990.
  27. Ng W. S., Lee M. L., & Hii S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 6(2), 723–729.
  28. Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015057.
  29. Nemati, M., & Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, 33(5), 635–642.
  30. Nemati, M., Greene, E., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925–933.
  31. Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587–598.
  32. Cheng L., Cord-Ruwisch R., & Shahin M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81–90.
  33. Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), 04014094.
  34. Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. Journal of Geotechnical and Geoenvironmental Engineering, 145(8), 04019033.
  35. Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221.
  36. Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E. (2015). Mechanical behaviour of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015066.
  37. Harran, R., Terzis, D., & Laloui, L. (2022).Characterizing the deformation evolution with stress and time of biocemented sands. Journal of Geotechnical and Geoenvironmental Engineering, 148(10), 04022074.
  38. Montoya, B. M., DeJong, J., & Boulanger, R. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302–312.
  39. Fukue, M., Makito, K., Tachibana, H., Lechowicz, Z., Tsukamoto, S., Nguyen, H., M. (2016). Reduction of liquefaction potential of loose sand by bio-cement. The 2nd Conference on Transport Infrastructure with Sustainable Development. Danang, Vietnam, 245–253.
  40. Sharma, M., Satyam, N., & Reddy, K. R. (2022). Liquefaction resistance of biotreated sand before and after exposing to weathering conditions. Indian Geotechnical Journal, 52, 328–340.
  41. DeJong, J.T., Gomez, M.G., San Pablo, A.C., Graddy, C.M.R., Nelson, D.C., Lee, M., Ziotopoulou, K., Montoya, B., Kwon, T.H. (2022). State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation. In: Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering. Sydney, 105.
  42. Cheng, Y., Tang, C., Pan, X., Liu, B., Xie, Y., Cheng, Q., & Shi, B. (2021). Application of microbial induced carbonate precipitation for loess surface erosion control. Engineering Geology, 294, 106387.
  43. Payan, M., Sangdeh, M. K., Salimi, M., Ranjbar, P. Z., Arabani, M., & Hosseinpour, I. (2024). A comprehensive review on the application of microbially induced calcite precipitation (MICP) technique in soil erosion mitigation as a sustainable and environmentally friendly approach. Results in Engineering, 24, 103235.
  44. Tang, C. S., Yin, Ly., Jiang, Nj., Zhu, C., Zheng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79, 94.
  45. Omoregie, A. I., Kan, F., Basri, H. F., Silini, M. O., & Rajasekar, A. (2024). Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium. Microorganisms, 13(1), 174.
  46. Jhuo, Y., Wong, H., Tung, H., & Ge, L. (2025). Effectiveness of microbial induced carbonate precipitation treatment strategies for sand. Environmental Technology & Innovation, 38, 104132.
  47. Kim, S., Kim, Y., Lee, S., & Do, J. (2021). Preliminary Study on Application and Limitation of Microbially Induced Carbonate Precipitation to Improve Unpaved Road in Lateritic Region. Materials, 15(20), 7219.
  48. Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. Journal of Industrial Microbiology and Biotechnology, 36(3), 433–438.
  49. Cheng, L., & Cord-Ruwisch, R. (2014). Upscaling Effects of Soil Improvement by Microbially Induced Calcite Precipitation by Surface Percolation. Geomicrobiology Journal, 31(5), 396–406.
  50. Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of biotreated coarse sand specimens. Scientific Reports, 11(1), 6161.
  51. Cheng, L., Shahin, M. A., & Mujah, D. (2017) Influence of key environmental conditions on micro-bially induced cementation for soil stabilization. J Geotech Geoenviron Eng 143, 4016083.
  52. Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549.
  53. Yum, W. S., & Do, J. (2021). Use of Bacteria to Activate Ground-Granulated Blast-Furnace Slag (GGBFS) as Cementless Binder. Materials, 15(10), 3620.
  54. Hu, X., Fu, X., Pan, P., Lin, L., & Sun, Y. (2021). Incorporation of Mixing Microbial Induced Calcite Precipitation (MICP) with Pretreatment Procedure for Road Soil Subgrade Stabilization. Materials, 15(19), 6529.
  55. Erdmann, N., & Strieth, D. (2023). Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World J Microbiol Biotechnol 39, 61.
  56. Martin, D., Dodds, K., Ngwenya, B. T., Butler, I. B., & Elphick, S. C. (2012). Inhibition of Sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis. Environmental Science & Technology, 46(15), 8351–8355.
  57. Jiang, N., Tang, C., Yin, L., Xie, Y., & Shi, B. (2019). Applicability of Microbial Calcification Method for sandy-slope surface erosion control. Journal of Materials in Civil Engineering, 31(11), 04019250.
  58. Sharma, M., Satyam, N., & Reddy, K. R. (2021). Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 705–716.
  59. Lauchnor, E. G., Topp, D. M., Parker, A. E., & Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcina pasteurii. Journal of Applied Microbiology, 118(6), 1321–32.
  60. Murugan, R., Suraishkumar, G. K., Mukherjee, A., & Dhami, N. K. (2021) Insights into the influence of cell concentration in design and development of micro-bially induced calcium carbonate precipitation (MICP) process. PLoS ONE 16(7): e0254536.
  61. Wang, Y., Soga, K., DeJong, J.T., & Kabla, A.J. (2021). Effects of Bacterial Density on Growth Rate and Characteristics of Microbial-Induced CaCO3 Precipitates: Particle-Scale Experimental Study. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021036.
  62. Zhang, X., Sun, Y., Chen, Y., Liu, L., Li, W., & Han, Y. (2025). Uniformity of microbial injection for reinforcing saturated calcareous sand: A multi-test approach. Biogeotechnics, 3(2), 100105.
  63. Mitchell, A. C., & Ferris, F. G. (2006). The Influence of Bacillus pasteurii on the Nucleation and Growth of Calcium Carbonate. Geomicrobiology Journal, 23(3–4), 213–226.
  64. Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views in Environmental Science and Bio/Technology 1, 3–7 (2002).
  65. De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136.
  66. Wang, Y., Soga, K., Dejong, J. T., & Kabla, A. J. (2019). A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP). Géotechnique, 69(12), 1086–1094.
  67. Fukue, M., Lechowicz, Z., Fujimori, Y., Emori, K., & Mulligan, C. N. (2023). Inhibited and Retarded Behavior by Ca2+ and Ca2+/OD Loading Rate on Ureolytic Bacteria in MICP Process. Materials, 16(9), 3357.
  68. Fukue, M., Lechowicz, Z., Fujimori, Y., Emori, K., & Mulligan, C. N. (2022). Incorporation of Optical Density into the Blending Design for a Biocement Solution. Materials, 15(5), 1951.
  69. Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001.
  70. Konstantinou, C., & Wang, Y. (2023). Unlocking the Potential of Microbially Induced Calcium Carbonate Precipitation (MICP) for Hydrological Applications: A Review of Opportunities, Challenges, and Environmental Considerations. Hydrology, 10(9), 178.
  71. Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. Construction and Building Materials, 104, 198-207.
  72. Fukue, M., Lechowicz, Z., Mulligan, C. N., Takeuchi, S., Fujimori, Y., & Emori, K. (2025). Properties and Behavior of Sandy Soils by a New Interpretation of MICP. Materials, 18(4), 809.
  73. Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233.
  74. Zamani, A., & Montoya, B. M. (2017). Shearing and hydraulic behavior of MICP treated Silty Sand. Geotechnical Frontiers, 290–299.
  75. Zhao, Y., Wang, Q., Yuan, M., Chen, X., Xiao, Z., Hao, X., Zhang, J., & Tang, Q. (2021). The Effect of MICP on Physical and Mechanical Properties of Silt with Different Fine Particle Content and Pore Ratio. Applied Sciences, 12(1), 139.
  76. Xu, H., Zheng, H., Wang, J., Ding, X., & Chen, P. (2019). Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. MethodsX, 6, 1036–1043.
  77. Sharma, A., Ramkrishnan, R. (2016). Study on effect of Microbial Induced Calcite Precipitates on strength of fine grained soils. Perspectives in Science, 8, 198–202.
  78. Wasil, M., Wydro, U. & Wołejko, E. (2023). Effect of Ureolytic Bacteria on Compressibility of the Soils with Variable Gradation. Architecture, Civil Engineering, Environment, 16(3), 131–139.
DOI: https://doi.org/10.2478/acee-2025-0037 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 147 - 156
Submitted on: May 16, 2025
|
Accepted on: Aug 18, 2025
|
Published on: Sep 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mariola WASIL, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.