References
- DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197–210.
- Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112–117.
- Cheng L., & Shahin M. A. (2016). Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385.
- van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175.
- Ivanov, V., & Chu, J. (2008) Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Reviews in Environmental Science and Bio/Technology, 7, 139–153.
- Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique, 63(4), 331–339.
- Jiang, N., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Geotechnique, 67, 42–55.
- Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423.
- Boquet, E., Boronat, A. & Ramos-Cormenzana, A. Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon. Nature 246, 527–529 (1973).
- Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and environmental microbiology, 69(8), 4901–4909.
- Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9–21.
- Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013) Engineered applications of ureolytic biomineralization: a review, Biofouling, 29(6), 715–733.
- Mujah, D., Shahin, M. A., & Cheng, L. (2016). State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, Geomicrobiology Journal, 34(6), 524–537.
- Ferris, F., Phoenix, V., Fujita, Y., & Smith, R. (2004). Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochimica et Cosmochimica Acta, 68(8), 1701–1710.
- Dhami N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314.
- Seifan, M., Samani, A. K., & Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100(6), 2591–2602.
- Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11), 2396.
- Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571.
- DeJong, J. T., Fritzges, M.B., & Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1381–1392.
- Anbu, P., Kang, C., Shin, Y., & So, J. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26.
- Rajasekar, A., Wilkinson, S., & Moy, C. K. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environmental Science and Ecotechnology, 6, 100096.
- Zha, F., Wang, H., Kang, B., Liu, C., Xu, L., & Tan, X. (2021). Improving the strength and leaching characteristics of Pb-contaminated silt through MICP. Crystals, 11(11), 1303.
- Li, X., Wang, Y., Tang, J., & Li, K. (2022). Removal behavior of heavy metals from aqueous solutions via microbially induced carbonate precipitation driven by acclimatized Sporosarcina pasteurii. Applied Sciences, 12(19), 9958.
- Erdmann, N., de Payrebrune, K. M., Ulber, R., & Strieth, D. (2022). Optimizing compressive strength of sand treated with MICP using response surface methodology. SN Applied Sciences, 4, 282.
- Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67.
- Taharia, M., Dey, D., Das, K., Sukul, U., Chen, J., Banerjee, P., Dey, G., Sharma, R. K., Lin, P., & Chen, C. (2024). Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. Ecotoxicology and Environmental Safety, 271, 115990.
- Ng W. S., Lee M. L., & Hii S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 6(2), 723–729.
- Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015057.
- Nemati, M., & Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, 33(5), 635–642.
- Nemati, M., Greene, E., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925–933.
- Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587–598.
- Cheng L., Cord-Ruwisch R., & Shahin M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81–90.
- Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), 04014094.
- Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. Journal of Geotechnical and Geoenvironmental Engineering, 145(8), 04019033.
- Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221.
- Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E. (2015). Mechanical behaviour of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015066.
- Harran, R., Terzis, D., & Laloui, L. (2022).Characterizing the deformation evolution with stress and time of biocemented sands. Journal of Geotechnical and Geoenvironmental Engineering, 148(10), 04022074.
- Montoya, B. M., DeJong, J., & Boulanger, R. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302–312.
- Fukue, M., Makito, K., Tachibana, H., Lechowicz, Z., Tsukamoto, S., Nguyen, H., M. (2016). Reduction of liquefaction potential of loose sand by bio-cement. The 2nd Conference on Transport Infrastructure with Sustainable Development. Danang, Vietnam, 245–253.
- Sharma, M., Satyam, N., & Reddy, K. R. (2022). Liquefaction resistance of biotreated sand before and after exposing to weathering conditions. Indian Geotechnical Journal, 52, 328–340.
- DeJong, J.T., Gomez, M.G., San Pablo, A.C., Graddy, C.M.R., Nelson, D.C., Lee, M., Ziotopoulou, K., Montoya, B., Kwon, T.H. (2022). State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation. In: Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering. Sydney, 105.
- Cheng, Y., Tang, C., Pan, X., Liu, B., Xie, Y., Cheng, Q., & Shi, B. (2021). Application of microbial induced carbonate precipitation for loess surface erosion control. Engineering Geology, 294, 106387.
- Payan, M., Sangdeh, M. K., Salimi, M., Ranjbar, P. Z., Arabani, M., & Hosseinpour, I. (2024). A comprehensive review on the application of microbially induced calcite precipitation (MICP) technique in soil erosion mitigation as a sustainable and environmentally friendly approach. Results in Engineering, 24, 103235.
- Tang, C. S., Yin, Ly., Jiang, Nj., Zhu, C., Zheng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79, 94.
- Omoregie, A. I., Kan, F., Basri, H. F., Silini, M. O., & Rajasekar, A. (2024). Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium. Microorganisms, 13(1), 174.
- Jhuo, Y., Wong, H., Tung, H., & Ge, L. (2025). Effectiveness of microbial induced carbonate precipitation treatment strategies for sand. Environmental Technology & Innovation, 38, 104132.
- Kim, S., Kim, Y., Lee, S., & Do, J. (2021). Preliminary Study on Application and Limitation of Microbially Induced Carbonate Precipitation to Improve Unpaved Road in Lateritic Region. Materials, 15(20), 7219.
- Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. Journal of Industrial Microbiology and Biotechnology, 36(3), 433–438.
- Cheng, L., & Cord-Ruwisch, R. (2014). Upscaling Effects of Soil Improvement by Microbially Induced Calcite Precipitation by Surface Percolation. Geomicrobiology Journal, 31(5), 396–406.
- Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of biotreated coarse sand specimens. Scientific Reports, 11(1), 6161.
- Cheng, L., Shahin, M. A., & Mujah, D. (2017) Influence of key environmental conditions on micro-bially induced cementation for soil stabilization. J Geotech Geoenviron Eng 143, 4016083.
- Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549.
- Yum, W. S., & Do, J. (2021). Use of Bacteria to Activate Ground-Granulated Blast-Furnace Slag (GGBFS) as Cementless Binder. Materials, 15(10), 3620.
- Hu, X., Fu, X., Pan, P., Lin, L., & Sun, Y. (2021). Incorporation of Mixing Microbial Induced Calcite Precipitation (MICP) with Pretreatment Procedure for Road Soil Subgrade Stabilization. Materials, 15(19), 6529.
- Erdmann, N., & Strieth, D. (2023). Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World J Microbiol Biotechnol 39, 61.
- Martin, D., Dodds, K., Ngwenya, B. T., Butler, I. B., & Elphick, S. C. (2012). Inhibition of Sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis. Environmental Science & Technology, 46(15), 8351–8355.
- Jiang, N., Tang, C., Yin, L., Xie, Y., & Shi, B. (2019). Applicability of Microbial Calcification Method for sandy-slope surface erosion control. Journal of Materials in Civil Engineering, 31(11), 04019250.
- Sharma, M., Satyam, N., & Reddy, K. R. (2021). Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 705–716.
- Lauchnor, E. G., Topp, D. M., Parker, A. E., & Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcina pasteurii. Journal of Applied Microbiology, 118(6), 1321–32.
- Murugan, R., Suraishkumar, G. K., Mukherjee, A., & Dhami, N. K. (2021) Insights into the influence of cell concentration in design and development of micro-bially induced calcium carbonate precipitation (MICP) process. PLoS ONE 16(7): e0254536.
- Wang, Y., Soga, K., DeJong, J.T., & Kabla, A.J. (2021). Effects of Bacterial Density on Growth Rate and Characteristics of Microbial-Induced CaCO3 Precipitates: Particle-Scale Experimental Study. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021036.
- Zhang, X., Sun, Y., Chen, Y., Liu, L., Li, W., & Han, Y. (2025). Uniformity of microbial injection for reinforcing saturated calcareous sand: A multi-test approach. Biogeotechnics, 3(2), 100105.
- Mitchell, A. C., & Ferris, F. G. (2006). The Influence of Bacillus pasteurii on the Nucleation and Growth of Calcium Carbonate. Geomicrobiology Journal, 23(3–4), 213–226.
- Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views in Environmental Science and Bio/Technology 1, 3–7 (2002).
- De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136.
- Wang, Y., Soga, K., Dejong, J. T., & Kabla, A. J. (2019). A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP). Géotechnique, 69(12), 1086–1094.
- Fukue, M., Lechowicz, Z., Fujimori, Y., Emori, K., & Mulligan, C. N. (2023). Inhibited and Retarded Behavior by Ca2+ and Ca2+/OD Loading Rate on Ureolytic Bacteria in MICP Process. Materials, 16(9), 3357.
- Fukue, M., Lechowicz, Z., Fujimori, Y., Emori, K., & Mulligan, C. N. (2022). Incorporation of Optical Density into the Blending Design for a Biocement Solution. Materials, 15(5), 1951.
- Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001.
- Konstantinou, C., & Wang, Y. (2023). Unlocking the Potential of Microbially Induced Calcium Carbonate Precipitation (MICP) for Hydrological Applications: A Review of Opportunities, Challenges, and Environmental Considerations. Hydrology, 10(9), 178.
- Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. Construction and Building Materials, 104, 198-207.
- Fukue, M., Lechowicz, Z., Mulligan, C. N., Takeuchi, S., Fujimori, Y., & Emori, K. (2025). Properties and Behavior of Sandy Soils by a New Interpretation of MICP. Materials, 18(4), 809.
- Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233.
- Zamani, A., & Montoya, B. M. (2017). Shearing and hydraulic behavior of MICP treated Silty Sand. Geotechnical Frontiers, 290–299.
- Zhao, Y., Wang, Q., Yuan, M., Chen, X., Xiao, Z., Hao, X., Zhang, J., & Tang, Q. (2021). The Effect of MICP on Physical and Mechanical Properties of Silt with Different Fine Particle Content and Pore Ratio. Applied Sciences, 12(1), 139.
- Xu, H., Zheng, H., Wang, J., Ding, X., & Chen, P. (2019). Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. MethodsX, 6, 1036–1043.
- Sharma, A., Ramkrishnan, R. (2016). Study on effect of Microbial Induced Calcite Precipitates on strength of fine grained soils. Perspectives in Science, 8, 198–202.
- Wasil, M., Wydro, U. & Wołejko, E. (2023). Effect of Ureolytic Bacteria on Compressibility of the Soils with Variable Gradation. Architecture, Civil Engineering, Environment, 16(3), 131–139.