Have a personal or library account? Click to login
Factors Affecting Biocementation Process by Micp in Soils Cover

Factors Affecting Biocementation Process by Micp in Soils

Open Access
|Sep 2025

References

  1. DeJong, J. T., Mortensen, B. M., Martinez, B. C., &amp; Nelson, D. C. (2010). Bio-mediated soil improvement. <em>Ecological Engineering, 36</em>(2), 197–210.
  2. Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., &amp; van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. <em>Ecological Engineering, 36</em>(2), 112–117.
  3. Cheng L., &amp; Shahin M. A. (2016). Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. <em>Canadian Geotechnical Journal, 53</em>(9), 1376–1385.
  4. van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., &amp; van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. <em>Ecological Engineering, 36</em>(2), 168–175.
  5. Ivanov, V., &amp; Chu, J. (2008) Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. <em>Reviews in Environmental Science and Bio/Technology</em>, 7, 139–153.
  6. Al Qabany, A., &amp; Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. <em>Geotechnique, 63</em>(4), 331–339.
  7. Jiang, N., &amp; Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. <em>Geotechnique</em>, 67, 42–55.
  8. Whiffin, V. S., van Paassen, L. A., &amp; Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. <em>Geomicrobiology Journal, 24</em>(5), 417–423.
  9. Boquet, E., Boronat, A. &amp; Ramos-Cormenzana, A. Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon. <em>Nature</em> 246, 527–529 (1973).
  10. Hammes, F., Boon, N., de Villiers, J., Verstraete, W., &amp; Siciliano, S. D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. <em>Applied and environmental microbiology, 69</em>(8), 4901–4909.
  11. Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. <em>Journal of Molecular Catalysis B: Enzymatic, 59</em>(1-3), 9–21.
  12. Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., &amp; Spangler, L. (2013) Engineered applications of ureolytic biomineralization: a review, <em>Biofouling, 29</em>(6), 715–733.
  13. Mujah, D., Shahin, M. A., &amp; Cheng, L. (2016). State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, <em>Geomicrobiology Journal, 34</em>(6), 524–537.
  14. Ferris, F., Phoenix, V., Fujita, Y., &amp; Smith, R. (2004). Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. <em>Geochimica et Cosmochimica Acta, 68</em>(8), 1701–1710.
  15. Dhami N. K., Reddy, M. S., &amp; Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: <em>A review. Frontiers in Microbiology</em>, 4, 314.
  16. Seifan, M., Samani, A. K., &amp; Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. <em>Applied microbiology and biotechnology, 100</em>(6), 2591–2602.
  17. Wu, Y., Li, H., &amp; Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, <em>Applications and Challenges. Microorganisms, 9</em>(11), 2396.
  18. Stocks-Fischer, S., Galinat, J. K., &amp; Bang, S. S. (1999). Microbiological precipitation of CaCO<sub>3</sub>. <em>Soil Biology and Biochemistry, 31</em>(11), 1563–1571.
  19. DeJong, J. T., Fritzges, M.B., &amp; Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. <em>Journal of Geotechnical and Geoenvironmental Engineering</em>, 132, 1381–1392.
  20. Anbu, P., Kang, C., Shin, Y., &amp; So, J. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. <em>SpringerPlus, 5</em>(1), 1–26.
  21. Rajasekar, A., Wilkinson, S., &amp; Moy, C. K. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. <em>Environmental Science and Ecotechnology</em>, 6, 100096.
  22. Zha, F., Wang, H., Kang, B., Liu, C., Xu, L., &amp; Tan, X. (2021). Improving the strength and leaching characteristics of Pb-contaminated silt through MICP. <em>Crystals, 11</em>(11), 1303.
  23. Li, X., Wang, Y., Tang, J., &amp; Li, K. (2022). Removal behavior of heavy metals from aqueous solutions via microbially induced carbonate precipitation driven by acclimatized Sporosarcina pasteurii. <em>Applied Sciences, 12</em>(19), 9958.
  24. Erdmann, N., de Payrebrune, K. M., Ulber, R., &amp; Strieth, D. (2022). Optimizing compressive strength of sand treated with MICP using response surface methodology. <em>SN Applied Sciences</em>, 4, 282.
  25. Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. <em>Journal of Advanced Research</em>, 13, 59–67.
  26. Taharia, M., Dey, D., Das, K., Sukul, U., Chen, J., Banerjee, P., Dey, G., Sharma, R. K., Lin, P., &amp; Chen, C. (2024). Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. <em>Ecotoxicology and Environmental Safety</em>, 271, 115990.
  27. Ng W. S., Lee M. L., &amp; Hii S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. <em>World Academy of Science, Engineering and Technology, 6</em>(2), 723–729.
  28. Feng, K., &amp; Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. <em>Journal of Geotechnical and Geoenvironmental Engineering, 142</em>(1), 04015057.
  29. Nemati, M., &amp; Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. <em>Enzyme and Microbial Technology, 33</em>(5), 635–642.
  30. Nemati, M., Greene, E., &amp; Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. <em>Process Biochemistry, 40</em>(2), 925–933.
  31. Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., &amp; Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. <em>Journal of Geotechnical and Geoenvironmental Engineering, 139</em>(4), 587–598.
  32. Cheng L., Cord-Ruwisch R., &amp; Shahin M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. <em>Canadian Geotechnical Journal, 50</em>(1), 81–90.
  33. Zhao, Q., Li, L., Li, C., Li, M., Amini, F., &amp; Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. <em>Journal of Materials in Civil Engineering, 26</em>(12), 04014094.
  34. Mahawish, A., Bouazza, A., &amp; Gates, W. P. (2019). Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. <em>Journal of Geotechnical and Geoenvironmental Engineering, 145</em>(8), 04019033.
  35. Canakci, H., Sidik, W., &amp; Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. <em>Soils and Foundations, 55</em>(5), 1211–1221.
  36. Lin, H., Suleiman, M. T., Brown, D. G., &amp; Kavazanjian, E. (2015). Mechanical behaviour of sands treated by microbially induced carbonate precipitation. <em>Journal of Geotechnical and Geoenvironmental Engineering, 142</em>(2), 04015066.
  37. Harran, R., Terzis, D., &amp; Laloui, L. (2022).Characterizing the deformation evolution with stress and time of biocemented sands. <em>Journal of Geotechnical and Geoenvironmental Engineering, 148</em>(10), 04022074.
  38. Montoya, B. M., DeJong, J., &amp; Boulanger, R. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. <em>Geotechnique, 63</em>(4), 302–312.
  39. Fukue, M., Makito, K., Tachibana, H., Lechowicz, Z., Tsukamoto, S., Nguyen, H., M. (2016). Reduction of liquefaction potential of loose sand by bio-cement. The 2nd Conference on Transport Infrastructure with Sustainable Development. Danang, Vietnam, 245–253.
  40. Sharma, M., Satyam, N., &amp; Reddy, K. R. (2022). Liquefaction resistance of biotreated sand before and after exposing to weathering conditions. Indian <em>Geotechnical Journal</em>, 52, 328–340.
  41. DeJong, J.T., Gomez, M.G., San Pablo, A.C., Graddy, C.M.R., Nelson, D.C., Lee, M., Ziotopoulou, K., Montoya, B., Kwon, T.H. (2022). State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation. In: Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering. Sydney, 105.
  42. Cheng, Y., Tang, C., Pan, X., Liu, B., Xie, Y., Cheng, Q., &amp; Shi, B. (2021). Application of microbial induced carbonate precipitation for loess surface erosion control. <em>Engineering Geology</em>, 294, 106387.
  43. Payan, M., Sangdeh, M. K., Salimi, M., Ranjbar, P. Z., Arabani, M., &amp; Hosseinpour, I. (2024). A comprehensive review on the application of microbially induced calcite precipitation (MICP) technique in soil erosion mitigation as a sustainable and environmentally friendly approach. <em>Results in Engineering</em>, 24, 103235.
  44. Tang, C. S., Yin, Ly., Jiang, Nj., Zhu, C., Zheng, H., Li, H., &amp; Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. <em>Environmental Earth Sciences</em>, 79, 94.
  45. Omoregie, A. I., Kan, F., Basri, H. F., Silini, M. O., &amp; Rajasekar, A. (2024). Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium. <em>Microorganisms, 13</em>(1), 174.
  46. Jhuo, Y., Wong, H., Tung, H., &amp; Ge, L. (2025). Effectiveness of microbial induced carbonate precipitation treatment strategies for sand. <em>Environmental Technology &amp; Innovation</em>, 38, 104132.
  47. Kim, S., Kim, Y., Lee, S., &amp; Do, J. (2021). Preliminary Study on Application and Limitation of Microbially Induced Carbonate Precipitation to Improve Unpaved Road in Lateritic Region. <em>Materials, 15</em>(20), 7219.
  48. Achal, V., Mukherjee, A., Basu, P. C., &amp; Reddy, M. S. (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. <em>Journal of Industrial Microbiology and Biotechnology, 36</em>(3), 433–438.
  49. Cheng, L., &amp; Cord-Ruwisch, R. (2014). Upscaling Effects of Soil Improvement by Microbially Induced Calcite Precipitation by Surface Percolation. <em>Geomicrobiology Journal, 31</em>(5), 396–406.
  50. Konstantinou, C., Wang, Y., Biscontin, G., &amp; Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of biotreated coarse sand specimens. <em>Scientific Reports, 11</em>(1), 6161.
  51. Cheng, L., Shahin, M. A., &amp; Mujah, D. (2017) Influence of key environmental conditions on micro-bially induced cementation for soil stabilization. <em>J Geotech Geoenviron Eng</em> 143, 4016083.
  52. Yasuhara, H., Neupane, D., Hayashi, K., &amp; Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. <em>Soils and Foundations, 52</em>(3), 539–549.
  53. Yum, W. S., &amp; Do, J. (2021). Use of Bacteria to Activate Ground-Granulated Blast-Furnace Slag (GGBFS) as Cementless Binder. <em>Materials, 15</em>(10), 3620.
  54. Hu, X., Fu, X., Pan, P., Lin, L., &amp; Sun, Y. (2021). Incorporation of Mixing Microbial Induced Calcite Precipitation (MICP) with Pretreatment Procedure for Road Soil Subgrade Stabilization. <em>Materials, 15</em>(19), 6529.
  55. Erdmann, N., &amp; Strieth, D. (2023). Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. <em>World J Microbiol Biotechnol</em> 39, 61.
  56. Martin, D., Dodds, K., Ngwenya, B. T., Butler, I. B., &amp; Elphick, S. C. (2012). Inhibition of Sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis. <em>Environmental Science &amp; Technology, 46</em>(15), 8351–8355.
  57. Jiang, N., Tang, C., Yin, L., Xie, Y., &amp; Shi, B. (2019). Applicability of Microbial Calcification Method for sandy-slope surface erosion control. <em>Journal of Materials in Civil Engineering, 31</em>(11), 04019250.
  58. Sharma, M., Satyam, N., &amp; Reddy, K. R. (2021). Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. <em>Journal of Rock Mechanics and Geotechnical Engineering, 13</em>(3), 705–716.
  59. Lauchnor, E. G., Topp, D. M., Parker, A. E., &amp; Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcina pasteurii. <em>Journal of Applied Microbiology, 118</em>(6), 1321–32.
  60. Murugan, R., Suraishkumar, G. K., Mukherjee, A., &amp; Dhami, N. K. (2021) Insights into the influence of cell concentration in design and development of micro-bially induced calcium carbonate precipitation (MICP) process. PLoS ONE 16(7): e0254536.
  61. Wang, Y., Soga, K., DeJong, J.T., &amp; Kabla, A.J. (2021). Effects of Bacterial Density on Growth Rate and Characteristics of Microbial-Induced CaCO<sub>3</sub> Precipitates: Particle-Scale Experimental Study. <em>Journal of Geotechnical and Geoenvironmental Engineering, 147</em>(6), 04021036.
  62. Zhang, X., Sun, Y., Chen, Y., Liu, L., Li, W., &amp; Han, Y. (2025). Uniformity of microbial injection for reinforcing saturated calcareous sand: A multi-test approach. <em>Biogeotechnics, 3</em>(2), 100105.
  63. Mitchell, A. C., &amp; Ferris, F. G. (2006). The Influence of Bacillus pasteurii on the Nucleation and Growth of Calcium Carbonate. <em>Geomicrobiology Journal, 23</em>(3–4), 213–226.
  64. Hammes, F., &amp; Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. <em>Re/Views in Environmental Science and Bio/Technology</em> 1, 3–7 (2002).
  65. De Muynck, W., De Belie, N., &amp; Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. <bold>Ecological Engineering, 36</bold>(2), 118–136.
  66. Wang, Y., Soga, K., Dejong, J. T., &amp; Kabla, A. J. (2019). A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP). <em>Géotechnique, 69</em>(12), 1086–1094.
  67. Fukue, M., Lechowicz, Z., Fujimori, Y., Emori, K., &amp; Mulligan, C. N. (2023). Inhibited and Retarded Behavior by Ca2+ and Ca2+/OD Loading Rate on Ureolytic Bacteria in MICP Process. <em>Materials, 16</em>(9), 3357.
  68. Fukue, M., Lechowicz, Z., Fujimori, Y., Emori, K., &amp; Mulligan, C. N. (2022). Incorporation of Optical Density into the Blending Design for a Biocement Solution. <em>Materials, 15</em>(5), 1951.
  69. Al Qabany, A., Soga, K., &amp; Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. <em>Journal of Geotechnical and Geoenvironmental Engineering, 138</em>(8), 992–1001.
  70. Konstantinou, C., &amp; Wang, Y. (2023). Unlocking the Potential of Microbially Induced Calcium Carbonate Precipitation (MICP) for Hydrological Applications: A Review of Opportunities, Challenges, and Environmental Considerations. <em>Hydrology, 10</em>(9), 178.
  71. Dhami, N. K., Reddy, M. S., &amp; Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. <em>Construction and Building Materials</em>, 104, 198-207.
  72. Fukue, M., Lechowicz, Z., Mulligan, C. N., Takeuchi, S., Fujimori, Y., &amp; Emori, K. (2025). Properties and Behavior of Sandy Soils by a New Interpretation of MICP. <em>Materials, 18</em>(4), 809.
  73. Mitchell, J. K., &amp; Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. <em>Journal of Geotechnical and Geoenvironmental Engineering, 131</em>(10), 1222–1233.
  74. Zamani, A., &amp; Montoya, B. M. (2017). Shearing and hydraulic behavior of MICP treated Silty Sand. <em>Geotechnical Frontiers</em>, 290–299.
  75. Zhao, Y., Wang, Q., Yuan, M., Chen, X., Xiao, Z., Hao, X., Zhang, J., &amp; Tang, Q. (2021). The Effect of MICP on Physical and Mechanical Properties of Silt with Different Fine Particle Content and Pore Ratio. <em>Applied Sciences, 12</em>(1), 139.
  76. Xu, H., Zheng, H., Wang, J., Ding, X., &amp; Chen, P. (2019). Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. <em>MethodsX</em>, 6, 1036–1043.
  77. Sharma, A., Ramkrishnan, R. (2016). Study on effect of Microbial Induced Calcite Precipitates on strength of fine grained soils. <em>Perspectives in Science</em>, 8, 198–202.
  78. Wasil, M., Wydro, U. &amp; Wołejko, E. (2023). Effect of Ureolytic Bacteria on Compressibility of the Soils with Variable Gradation. <em>Architecture, Civil Engineering, Environment, 16</em>(3), 131–139.
DOI: https://doi.org/10.2478/acee-2025-0037 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 147 - 156
Submitted on: May 16, 2025
Accepted on: Aug 18, 2025
Published on: Sep 30, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Mariola WASIL, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.