References
-
[1]
E. Dugarova and N. Gülasan. (2017). Challenges and Opportunities in the Implementation of the Sustainable Development Goals 2 Lead Authors. [Online]. Available: www.unrisd.org
Dugarova E. Gülasan N. . ( 2017 ). Challenges and Opportunities in the Implementation of the Sustainable Development Goals 2 Lead Authors . [Online]. Available: www.unrisd.org
- C. A. Powell and B. D. Morreale. (2008). Materials Challenges in Advanced Coal Conversion Technologies.
- M. A. Dmitrienko, G. S. Nyashina, and P. A. Strizhak (2017). Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals, J Hazard Mater, 338, 148–159, doi: 10.1016/j.jhazmat.2017.05.031.
- Z. Zakaria, M. A. Mohd Ishak, M. F. Abdullah, and K. Ismail, (2010). Thermal Decomposition Study of Coals, Rice Husk, Rice Husk Char and Their Blends During Pyrolysis and Combustion via Thermogravimetric Analysis, International Journal of Chemical Technology, 2(3), 78–87. doi: 10.3923/ijct.2010.78.87.
- C. Wang, F. Wang, Q. Yang, and R. Liang (2009). Thermogravimetric studies of the behavior of wheat straw with added coal during combustion, Biomass Bioenergy, 33(1), 50–56. doi: 10.1016/j.biombioe.2008.04.013.
- M. Tauseef et al., (2022). Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production, Fuel, 318(1). doi: 10.1016/j.fuel.2022.123685.
- U. Aslam, N. Ramzan, T. Iqbal, M. Kazmi, and A. Ikhlaq, (2016). Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk. Polish Journal of Chemical Technology, 18(3), 117–121. doi: 10.1515/pjct-2016-0057.
- L. Ludueña, D. Fasce, V. A. Alvarez, and P. M. Stefani, (2011). Nanocellulose from rice husk.
- S. M. L. Rosa, N. Rehman, M. I. G. De Miranda, S. M. B. Nachtigall, and C. I. D. Bica, (2012). Chlorinefree extraction of cellulose from rice husk and whisker isolation, Carbohydr Polym, 87(2), 1131–1138. doi: 10.1016/j.carbpol.2011.08.084.
- H. B. Vuthaluru, (2004). Thermal behaviour of coal/biomass blends during co-pyrolysis, Fuel Processing Technology, 85(2–3), 141–155. doi: 10.1016/S0378-3820(03)00112-7.
- K. Jayaraman, MV. Kok, I. Gokalp. (2017). Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of blends. Renewable energy, 101, 293–300. doi: 10.1016/j.renene.2016.08.072
- K. Jayaraman and I. Gökalp, (2015). Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge, Energy Convers Manag, 89, 83–91. doi: 10.1016/j.enconman.2014.09.058.
- H. E. Kissinger, (1956). Reaction Kinetics in Differential Thermal Analysis. [Online]. Available: https://pubs.acs.org/sharingguidelines
- C. D. Doyle, (1961). Kinetic analysis of thermogravimetric data, J Appl Polym Sci, 5(15), 285–292. doi: 10.1002/app.1961.070051506.
- Y. F. Huang, W. H. Kuan, P. T. Chiueh, and S. L. Lo, (2011). A sequential method to analyze the kinetics of biomass pyrolysis, Bioresour Technol, 102(19), 9241–9246. doi: 10.1016/j.biortech.2011.07.015.
- S. Ceylan and Y. Topçu, (2014). Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis, Bioresour Technol, 156, 182–188. doi: 10.1016/j.biortech.2014.01.040.
- A. K. Burnham, (1999). Global kinetic analysis of complex materials, Energy and Fuels, 13(1), 1–22. doi: 10.1021/ef9800765.
- A. Ortega, (2008). A simple and precise linear integral method for isoconversional data, Thermochimica Acta, 474(1-2), 81–86. doi: 10.1016/j.tca.2008.05.003
- A. Demirbas, (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues, J Anal Appl Pyrolysis, 72(2), 243–248, doi: 10.1016/j.jaap.2004.07.003.
- D. Kazawadi, G. R. John, and C. K. King’ondu, (2014). Experimental Investigation of Thermal Characteristics of Kiwira Coal Waste with Rice Husk Blends for Gasification, Journal of Energy, 2014, 1–8, doi: 10.1155/2014/562382.
- D. K. W. Gan et al., (2018). Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts, Bioresour Technol, 265, 180–190. doi: 10.1016/j.biortech.2018.06.003.
- M. Asadieraghi and W. M. A. Wan Daud, (2015). Insitu catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multizone fixed bed reactor, Energy Convers Manag, 101, 151–163. doi: 10.1016/j.enconman.2015.05.008.
- M. Brebu and C. Vasile, (2010). Thermal degradation of lignin-a review.
- J. Zhang, T. Chen, J. Wu, and J. Wu, (2014). Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere, Bioresour Technol, 166, 87–95. doi: 10.1016/j.biortech.2014.05.030.
- A. Bhagavatula, G. Huffman, N. Shah, and R. Honaker, (2014). Evaluation of Thermal Evolution Profiles and Estimation of Kinetic Parameters for Pyrolysis of Coal/Corn Stover Blends Using Thermogravimetric Analysis, Journal of Fuels, 1–12, doi: 10.1155/2014/914856.