Figure 1.

Figure 2.
![Block scheme - simulation of the risk output variable (scheme developed based on [7])](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/677fbdf9082aa65dea3c70d1/j_acee-2024-0006_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKPUB5WU4R%2F20251214%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251214T063531Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEGIaDGV1LWNlbnRyYWwtMSJIMEYCIQDuV5zGF%2B7%2FhTwfNy8KS9%2BGsogj3iOsH7rW4jBbUugVBAIhAPjtpyiNuNOI1csuDG2z86PmbWql26kSxOfUhccqrvgkKr0FCCsQAhoMOTYzMTM0Mjg5OTQwIgw7QriduRHnulW6npUqmgUAxoq6UwY2ntwZB6173S044L3sMc5YJZxd9uxvZXeHw64qMuShbzSDcMWImlpqOS3WQias3ENmwQsyy4oENhnnigfZIEdt%2BMY40xVTGgstsM8bu2c71xpu3o1MkiDhxOYQLCxmZNAjpjGvxkE7%2FdI%2B7wP1RMXjIi8WRAXZ3TPPj9xEmFP5kuRk3PPM0iisuD60MMqzyn3NHGudNMIP3pZY04bhvDRDlfKDPn%2BdZAhFKFP%2B5SoYKKgIN03Up9AA%2FEh0PUWYwJkcV5OvuIut9EnI2IENk4ZAbZ5NpkAX7HilGA%2BhUjHg5ykltjOSmdzSgm43yeHoY0nlyzGMIdh6yx%2FF9k88XPFGv86oesFNTJCHgo5cQyGVxQFq1C72XGlemv7OR%2FgfNxOL7hVZrRd%2F2PXRdP5jpXwtZ4lyyTVeBnB8Xzz5MUDcDEIA0U1GM9ya68JpCGT3moIW3zTzj4CD4UALdq5rYWwtc1vQUNtKdnCTWU1cyb6yKSg86yGeqKnCloXDhg7BE19ce3J6GbmY3UQRd98YrzC0P%2BoRQyK6THq9is6nFwPh9c56vWxkG5ZooFvUsDGi%2FoH8HtiYC%2F%2F8SfBkhe9TV36RUBVI7iCBsxLCOxC4wgwZztRQEcK8KYdqNi9pfKuhh1ATsdMSRXK%2F3%2F9gp9ZItpVtQXyH7TL9Say9eZIm3k77RRJD5vRDl7R479dADBsvASahX6%2BSNi5rt0hsZ21CCK92cqULjWR2tc4gKFxWLRsvekehlcQNzkDMXD9XVY27hdL3q53cQSksQWZ3TnaIzFJn%2BhO5h%2BgVkprjF7%2FokA5oxg1eUcQ%2BtylUfL7Fm4tIgt4QOsnpHX5E07hdTr6wpJ56mGXwaxHfKs6nw4wI1MGyf2RH1LQw47j4yQY6sAHY%2B2NqTQ7cgdKBBZ%2BWZX7aCuezfdFn9IbOrtb9sCRMGMT4yKb4ZmPDivNh%2FYoZVOWVE1U6F3qODQ2lF2ny1uD564cvqF1RxF8dqJGHhkJU7YRFEH9qXTUifSFw9v%2B1l3F9u9xkYKFcnd%2FYWD%2FMT7ceDEZA%2BiYmOHmFuabjGxYr1RdDQ4UjEvPnL%2FcRTKOka8zU%2FRapptZUvU6NwL5wCZ1D%2BbQhPlJDhKd0muSupfnfNg%3D%3D&X-Amz-Signature=3c0707dad6318d7c89aabb290b02ab8c3bf4ec69e33b8b40b2d0e3ee43f5d33c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Risk values estimated for different types of copulas and different sample sizes
| Type of cupola | Number of random groups N | Value of risk |
|---|---|---|
| Gaussa | 1000 | 5.70 |
| 100000 | 5.57 | |
| Claytona | 1000 | 5.91 |
| 100000 | 5.85 |
Simulated risk of misconduct
| Parameter | Gauss copula | Clayton copula |
|---|---|---|
| Number of simulations | 1000 | 1000 |
| Maximum | 7.30 | 8.27 |
| Minimum | 0.21 | 4. |
| Mean | 4.46 | 5.11 |
| 95% VofR | 5.70 | 5.91 |
Risk matrix calculated according to formula (9)
| Ei | Di | ||
|---|---|---|---|
| 1 | 2 | 3 | |
| 1 | 1 | 2 | 3 |
| 2 | 2 | 4 | 6 |
| 3 | 3 | 6 | 9 |