References
- NASA Science. (2022, May 5). Solar System Exploration. https://solarsystem.nasa.gov/
- Jakosky, B. M. (2019). The CO2 inventory on Mars. Planetary and Space Science, 175, 52–59. https://doi.org/10.1016/j.pss.2019.06.002
- Kurokawa, H., Kurosawa, K., & Usui, T. (2018). A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus, 299, 443–459. https://doi.org/10.1016/j.icarus.2017.08.020
- Scherf, M., & Lammer, H. (2021). Did Mars Possess a Dense Atmosphere During the First ~ 400 Million Years? Space Science Review, 217. https://doi.org/10.1007/s11214-020-00779-3
- NASA Science. (n.d.). Mars Weather. Retrieved June 23, 2023, from https://mars.nasa.gov/msl/weather/
- Zhang, J., Guo, J., & Dobynde, M. I. (2023). What is the Radiation Impact of Extreme Solar Energetic Particle Events on Mars? Space Weather, 21(6), 1–13. https://doi.org/10.1029/2023SW003490
- United States Department of Labor (n.d.). Non-Ionizing Radiation. https://www.osha.gov/non-ionizing-radiation
- European Organization for Nuclear Research [CERN]. (n.d., May 13). Cosmic rays: particles from outer space. https://home.cern/science/physics/cosmic-rays-particles-outer-space
- Stanford Solar Center [SSC]. (n.d., May 14). Tracking solar flares. http://solar-center.stanford.edu/SID/activities/ionosphere.html
- Thoudam, S., Rachen, J. P., van Vliet, A., Achterberg, A., Buitink, S., Falcke, H., & Hörandel, J.R. (2016). Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component. Astronomy & Astrophysics, 595(A33). https://doi.org/10.1051/0004-6361/201628894
- Obodovskiy, I. (2019). Radiation Fundamentals, Applications, Risks, and Safety. Elsevier. https://doi.org/10.1016/C2016-0-02609-8
- Logachev, Yu. I., Zeldovich, M. A., Surova, G. M., & Kecskemety, K. (2003). Energy Spectrum of Galactic 10–100 MeV Protons in Quiet Sun Periods. Cosmic Research 41, 13–18. https://doi.org/10.1023/A:1022395311635
- Muscheler, R. (2013). Ice Core Methods | 10Be and Cosmogenic Radionuclides in Ice Cores. In Elias S. A. & Mock C. J. (Eds.), Encyclopedia of Quaternary Science (Second edition) (353–360). https://doi.org/10.1016/B978-0-444-53643-3.00328-9
- Rahmanifard, F., de Wet, N., W. C., Schwadron, A., Owens, M. J., Jordan, A. P., Wilson, J. K., Joyce, C. J., Spence, H. E., Smith, C. W., & Townsend, L. W. (2020). Galactic Cosmic Radiation in the Interplanetary Space Through a Modern Secular Minimum. Space Weather, 18(9). https://doi.org/10.1029/2019SW002428
- Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M.-H., Grinspoon, D., Bullock, M. A.,…Moores, J. E. (2014). Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover. Science, 343(6169). https://doi.org/10.1126/science.1244797
- Paris, A. J., Davies, E. T., Tognetti, L., & Zahniser, C. (2019). Prospective Lava Tubes at Hellas Planitia. Journal of the Washington Academy of Sciences.
- Blanchett, A. (2017, September 19). Space Radiation is Risky Business for the Human Body. NASA. Human Research. https://www.nasa.gov/feature/space-radiation-is-risky-business-for-the-human-body
- NASA. (2018, June 8) Space Radiation (HRP Elements). https://www.nasa.gov/hrp/elements/radiation/risks
- International Commission on Radiological Protection [ICRP]. (n.d.). Recommendations. https://www.icrp.org/consultation_viewitem.asp?guid=%7B012C4E04-7B2F-4A2E-B010-B7F614B3BEE0%7D
- World Nuclear Association. (2022, October). Radiation and Health Effects. World-nuclear.org. https://world-nuclear.org/information-library/safety-and-security/radiation-and-health/radiation-and-health-effects.aspx
- International Atomic Energy Agency [IAEA]. (n.d.). Radiation in Everyday Life. https://www.iaea.org/Publications/Factsheets/English/radlife
- Cekanaviciute, E., Rosi S., & Costes, S.V. (2018). Central nervous system responses to simulated galactic cosmic rays. International Journal of Molecular Sciences 19(11). https://www.mdpi.com/1422-0067/19/11/3669/htm
- Dobynde, M. I., Shprits, Y. Y., Drozdov, A. Y., Hoffman, J., & LI, J. (2021). Beating 1 Sievert: Optimal Radiation Shielding of Astronauts on a Mission to Mars. Space Weather, 19(9). https://doi.org/10.1029/2021SW002749
- Rojdev, K., & Atwell, W. (2015). Hydrogen-and Methane-Loaded Shielding Materials for Mitigation of Galactic Cosmic Rays and Solar Particle Events. Gravitational and Space Research, 3(1). https://doi.org/10.2478/gsr-2015-0006
- Naito, M., Kodaira, S., Ogawara, R., Tobita, K., Someya, Y., Kusumoto, T., Kusano, H., Kitamura, H., Koike, M., Uchihori, Y., Yamanaka, M., Mikoshiba, R., Endo, T., Kiyono, N., Hagiwara, Y., Kodama, H., Matsuo, S., Takami, Y., Sato, & T., Orimo, Si. (2020). Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 26, 69–76. https://doi.org/10.1016/j.lssr.2020.05.001
- Yokoo, S., Hirose, K., Tagawa, S., Morard, G., & Ohishi, Y. (2022). Stratification in planetary cores by liquid immiscibility in Fe-S-H. Nature Communications 13(644). https://doi.org/10.1038/s41467-022-28274-z
- Yao, C., & Ma, Y. (2021). Superconducting materials: Challenges and opportunities for large-scale applications. iScience, 24(6), 102541. https://doi.org/10.1016/j.isci.2021.102541
- Lutz, K., Cadiou, H., Trevino, T., & Cinelli, I. (2021). Electromagnetic Fields to Sustain Life on Earth, in Space, and Planets. 72nd International Astronautical Congress (IAC), Dubai. https://www.researchgate.net/publication/356474843_Electromagnetic_Fields_to_Sustain_Life_on_Earth_in_Space_and_Planets
- Norimura, T., Imada, H., Kunugita, N., Yoshida, N., & Nikaido, M. (1993). Effects of strong magnetic fields on cell growth and radiation response of human T-lymphocytes in culture. Journal of UOEH, 15(2), 103–112. https://doi.org/10.7888/juoeh.15.103
- Saunders, R. (2005). Static magnetic fields: animal studies. Progress in Biophysics and Molecular Biology, 87(2–3), 225–239. https://doi.org/10.1016/j.pbiomolbio.2004.09.001
- Bamford, R. A., Kellett, B. J., Green, J. L., Dong, C., Airapetian, V., & Bingham, B. (2021). How to create an artificial magnetosphere for Mars. Acta Astronautica, 190, 323–333. https://doi.org/10.1016/j.actaastro.2021.09.023
- Bloshenko, A. D., Robinson, J. M., Colon, R. A., & Anchordoqui, L. A. (2021). Health threat from cosmic radiation during manned missions to Mars. Proceedings of Science, 37th International Cosmic Ray Conference, 15–22 July, 2021, Berlin. https://doi:10.5281/zenodo.4327684
- Khuller, A. R., Christensen, P. R., & Warren, S. G. (2021). Spectral Albedo of Dusty Martian H2O Snow and Ice. Journal of Geophysical Research: Planets, 126(9). https://doi.org/10.1029/2021JE006910
- Khuller, A. R., & Christensen, P. R. (2021). Evidence of exposed dusty water ice within martian gullies. Journal of Geophysical Reasearch: Planets, 126. https://doi.org/10.1029/2020JE006539
- Zhang, J., Guo, J., Dobynde, M. I., Wang, Y., & Wimmer-Schweingruber, R. F. (2022). From the Top of Martian Olympus to Deep Craters and Beneath: Mars Radiation Environment Under Different Atmospheric and Regolith Depths. Journal of Geophysical Research: Planets, 127(3). https://doi.org/10.1029/2021JE007157
- Tillman, N. T. (2017, December 9). Valles Marineris: Facts About the Grand Canyon of Mars. Space.com. https://www.space.com/20446-valles-marineris.html
- Mitrofanov, I., Malkhov, A., Djachkova, A., Golovin, D., Litvak, M., Mokrousov, M., Sanin, A., Svedhem, H., & Zelenyi, L. (2022). The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars. Icarus, 374. https://doi.org/10.1016/j.icarus.2021.114805
- Butcher, F. E. (2022). Water Ice at Mid-Latitudes on Mars. Oxford Research Encyclopedia of Planetary Science. Oxford University Press. Retrieved 24 June 2022, from https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-239
- NASA. (2016, November 22) Mars Ice Deposit Holds as Much Water as Lake Superior. https://www.nasa.gov/feature/jpl/mars-ice-deposit-holds-as-much-water-as-lake-superior
- Chen, J. L., Yun, S. J., Dong, T. K., Ren, Z. Z., & Zhang, X. P. (2022). Studies of the radiation environment on the Mars surface using the Geant4 toolkit. Nuclear Science and Techniques 33(11). https://doi.org/10.1007/s41365-022-00987-2
- Guo, J., Khaksarighiri, S., Wimmer-Schweingruber, R. F., Hassler, D. M., Ehresmann, B., Zeitlin, C., Löffler, S., Matthiä, D., Berger, T., Reitz, G., & Calef, F. (2021). Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation. Geophysical Research Letters, 48(15). https://doi.org/10.1029/2021GL093912
- Mangan, T. P., Plane, J. M. C., & Murray, B. J. (2021). The Phase of Water Ice Which Forms in Cold Clouds in the Mesospheres of Mars, Venus, and Earth. Journal of Geophysical Research: Planets, 126(3). https://doi.org/10.1029/2020JE006796
- Mifsud, D.V., Hailey, P.A., Herczku, P., Juhász, Z., Kovács, S. T. S., Sulik, B., Ioppolo, S., Kaňuchová, Z., McCullough, R. W., Paripás, B. & Mason, N. J. (2022). Laboratory experiments on the radiation astrochemistry of water ice phases. The European Physical Journal D (76)87. https://doi.org/10.1140/epjd/s10053-022-00416-4
- NASA. (2016, December 29) A New Home on Mars: NASA Langley’s Icy Concept for Living on the Red Planet. https://www.nasa.gov/feature/langley/a-new-home-on-mars-nasa-langley-s-icy-concept-for-living-on-the-red-planet
- Cushing, G. E. (2015). Mars Global Cave Candidate Catalog PDS4 Archive Bundle. PDS Cartography and Imaging Sciences Node (IMG). https://doi.org/10.17189/1519222
- Williams, M. (2016, December 19). How strong is the gravity on Mars? Universe Today. https://www.universetoday.com/14859/gravity-on-mars/
- Van Ellen, L., & Peck, D. (2018). Use of in situ ice to build a sustainable radiation shielding habitat on Mars. 69th International Astronautical Congress, Bremen. https://www.researchgate.net/publication/342145558_Use_of_in_situ_ice_to_build_a_sustainable_radiation_shielding_habitat_on_Mars
- Blachowicz, T., & Ehrmann, A. (2021). Shielding of Cosmic Radiation by Fibrous Materials. Fibres, 9(60). https://doi.org/10.3390/fib9100060
- Roberts, A. D., Whittall, D. R., Breitling, R., Takano, E., Blaker, J. J., Hay, S., & Scrutton, N. S. (2021). Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Materials Today Bio, 12. https://doi.org/10.1016/j.mtbio.2021.100136
- Shiwei, N., Dritsas, S., & Fernandez, J. G. (2020). Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing. PLoS ONE 15(9). https://doi.org/10.1371/journal.pone.0238606
- NASA. (2019, May 4) Teams 3D Print Planetary Habitats, Awarded $700K in NASA Challenge. https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/19-017.html
- Designboom (2023, February 17). Interstellar shoots for the Moon, Mars, and more. https://www.designboom.com/architecture/interstellar-lab-self-sustainable-space-pods-dassault-systemes-02-17-2023/
- Savage, N. (2017, December 27). To build settlements on Mars, we’ll need materials chemistry. Chemical & Engineering News. https://cen.acs.org/articles/96/i1/build-settlements-Mars-ll-need.html
- Wan, L., Wendner, R., & Cusatis, G. (2016). A novel material for in situ construction on Mars: experiments and numerical simulations. Construction and Building Materials, 120, 222–231. https://doi.org/10.1016/j.conbuildmat.2016.05.046
- Esmaeil, N., Gharagozloo, M., Rezaei, A., & Grunig, G. (2014). Dust events, pulmonary diseases and immune system. American Journal of Clinical and Experimental Immunology, 3(1), 20–29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960758/
- Bier, H., Vermeer, E., Hidding, A., & Jani, K. (2021). Design-to-Robotic-Production of Underground Habitats on Mars. SPOOL, 8(2), 31–38. https://doi.org/10.7480/spool.2021.2.6075