Hasnat, A. (2015). Prithul Saha Ultimate load capacity of axially loaded vertical piles from full scale load test results interpretations applied to 20 case histories., doi:10.13140/2.1.3755.2960.
Meyer, Z. (2017). Wykorzystanie testu statycznego do prognozy osiadania, mobilizacji podstawy i pobocznicy. In Proceedings of the Naprawy i wzmocnienia konstrukcji budowlanych; Wisła, 303–318.
Siemaszko, P.; Meyer, (2019). Z. Static load test curve analysis based on soil field investigations. Bull. Polish Acad. Sci. Tech. Sci., 67, 329–337. doi:10.24425/bpas.2019.128607.
Guo, Z.; Deng, L. (2018). Field behaviour of screw micropiles subjected to axial loading in cohesive soils. Can. Geotech. J., 55, 34–44, doi:10.1139/cgj-2017-0109.
Kim, D.; Jeong, S.; Park, J. (2020). Analysis on shaft resistance of the steel pipe prebored and precast piles based on field load-transfer curves and finite element method. Soils Found., 60, 478–495. doi:10.1016/j.sandf.2020.03.011.
Krasiński, A.; Sieńko, R. (2010). Pomiar pionowego rozkładu siły w palu podczas testów statycznych. In Proceedings of the 56 Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZiTB, 161–168.
Gwizdala, K.; Krasinski, A. (2013). Bearing capacity of displacement piles in layered soils with highly diverse strength parameters. Proc. 18th Int. Conf. Soil Mech. Geotech. Eng, 2739–2742.
Wang, Y.; Liu, X.; Sang, S.; Zhang, M.; Wang, P. (2020). A model test for the influence of lateral pressure on vertical bearing characteristics in pile jacking process based on optical sensors. Sensors (Switzerland), 20, doi:10.3390/s20061733.
Żarkiewicz, K. (2019). Lateral stress changes along the pile skin during axial loading in laboratory test. In Proceedings of the Geotechnical Engineering foundation of the future; Reykjavik, 1–8.
Konkol, J.; Bałachowski, L. (2017). Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method. Stud. Geotech. Mech., 39, doi:10.1515/sgem-2017-0003.
Tovar-Valencia, R.D.; Galvis-Castro, A.; Salgado, R.; Prezzi, M.; Fridman, D. (2022). Experimental measurement of particle crushing around model piles jacked in a calibration chamber. Acta Geotech., 8, doi:10.1007/s11440-022-01681-8.
Haque, M.N.; Abu-Farsakh, M.Y.; Zhang, Z. (2020). Evaluation of pile capacity from CPT and pile setup phenomenon. Int. J. Geotech. Eng., 14, 196–205, doi:10.1080/19386362.2017.1413035.
Eslami, A.; Valikhah, F.; Veiskarami, M.; Salehi, M. (2017). CPT-Based Investigation for Pile Toe and Shaft Resistances Distribution. Geotech. Geol. Eng., 35, 2891–2905, doi:10.1007/s10706-017-0287-8.
Żarkiewicz, K. (2018). Laboratory research of toe resistance based on static pile load tests in different schemes. Civ. Envionmental Eng. Reports, 28, 80–81, doi:10.2478/ceer-2018-0014.
Meyer, Z.; Żarkiewicz, K. (2017). Mechanizm formowania się oporu pobocznicy przy podstawie pala określony na podstawie badań laboratoryjnych. Inżynieria i Bud., R. 73, nr 5.
Żarkiewicz, K.; Qatrameez, W. (2021). Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors. Sensors, 21, doi:10.3390/s21217214.
PN-EN ISO 14688-1:2018-05. Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description (ISO 14688-1:2017).
Kamal, Z.A.; Arab, M.G.; Dif, A. (2016). Analysis of The arching phenomenon of bored piles in sand. Alexandria Eng. J., 55, 2639–2645. doi:10.1016/j.aej.2016.06.035.