Have a personal or library account? Click to login
The Analysis of Pile Skin and Base Resistances Interaction Based on Static Pile Load Test in Experimental Research Cover

The Analysis of Pile Skin and Base Resistances Interaction Based on Static Pile Load Test in Experimental Research

Open Access
|Oct 2023

References

  1. Lastiasih, Y.; Sidi, I.D. (2014). Reliability of Estimation Pile Load Capacity Methods. J. Eng. Technol. Sci., 46, 1–16, doi:10.5614/j.eng.technol.sci.2014.46.1.1.
  2. Hasnat, A. (2015). Prithul Saha Ultimate load capacity of axially loaded vertical piles from full scale load test results interpretations applied to 20 case histories., doi:10.13140/2.1.3755.2960.
  3. Wrana, B. (2015). Pile Load Capacity – Calculation Methods. Stud. Geotech. Mech., 37, doi:10.1515/sgem-2015-0048.
  4. Meyer, Z. (2017). Wykorzystanie testu statycznego do prognozy osiadania, mobilizacji podstawy i pobocznicy. In Proceedings of the Naprawy i wzmocnienia konstrukcji budowlanych; Wisła, 303–318.
  5. Meyer, Z.; Żarkiewicz, K. (2015). Analiza współpracy pala z gruntem w dużym zakresie osiadania. In Awarie Budowlane; Szczecin-Międzyzdroje, 405–412.
  6. Meyer, Z.; Żarkiewicz, K. (2018). Skin and Toe Resistance Mobilisation of Pile During Laboratory Static Load Test. Stud. Geotech. Mech, 40, 1–5.
  7. Siemaszko, P.; Meyer, (2019). Z. Static load test curve analysis based on soil field investigations. Bull. Polish Acad. Sci. Tech. Sci., 67, 329–337. doi:10.24425/bpas.2019.128607.
  8. Fioravante, V. (2002). On the shaft friction modeling of non-displacment piles in sand. Japanese Geotech. Soc., 42, 23–33, doi:10.1248/cpb.37.3229.
  9. Guo, Z.; Deng, L. (2018). Field behaviour of screw micropiles subjected to axial loading in cohesive soils. Can. Geotech. J., 55, 34–44, doi:10.1139/cgj-2017-0109.
  10. Gupta, R.C. (2013). Load-Settlement Behavior of Drilled Shafts in Multilayered Deposits of Soils and Intermediate Geomaterials. Geotech. Test. J., 36, 20130016, doi:10.1520/GTJ20130016.
  11. Kim, D.; Jeong, S.; Park, J. (2020). Analysis on shaft resistance of the steel pipe prebored and precast piles based on field load-transfer curves and finite element method. Soils Found., 60, 478–495. doi:10.1016/j.sandf.2020.03.011.
  12. Krasiński, A.; Sieńko, R. (2010). Pomiar pionowego rozkładu siły w palu podczas testów statycznych. In Proceedings of the 56 Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZiTB, 161–168.
  13. Gwizdala, K.; Krasinski, A. (2013). Bearing capacity of displacement piles in layered soils with highly diverse strength parameters. Proc. 18th Int. Conf. Soil Mech. Geotech. Eng, 2739–2742.
  14. Sienko, R.; Bednarski, L.; Kanty, P.; Howiacki, T. (2019). Application of Distributed Optical Fibre Sensor for Strain and Temperature Monitoring within Continuous Flight Auger Columns. IOP Conf. Ser. Earth Environ. Sci., 221. doi:10.1088/1755-1315/221/1/012006.
  15. Buda-Ożóg, L.; Zięba, J.; Sieńkowska, K.; Nykiel, D.; Zuziak, K.; Sieńko, R.; Bednarski, Ł. (2022). Distributed fibre optic sensing: Reinforcement yielding strains and crack detection in concrete slab during column failure simulation. Meas. J. Int. Meas. Confed., 195, doi:10.1016/j.measurement.2022.111192.
  16. Baca, M.; Rybak, J. (2021). Pile base and shaft capacity under various types of loading. Appl. Sci., 11, doi:10.3390/app11083396.
  17. Zarkiewicz, K. (2019). Laboratory Experiment of Soil Vertical Displacement Measurement Near an Axially Loaded Pile. IOP Conf. Ser. Mater. Sci. Eng., 603, 032012, doi:10.1088/1757-899X/603/3/032012.
  18. Wang, Y.; Liu, X.; Sang, S.; Zhang, M.; Wang, P. (2020). A model test for the influence of lateral pressure on vertical bearing characteristics in pile jacking process based on optical sensors. Sensors (Switzerland), 20, doi:10.3390/s20061733.
  19. Lehane, B.M.; White, D.J. (2005). Lateral stress changes and shaft friction for model displacement piles in sand. Can. Geotech. J., 42, 1039–1052, doi:10.1139/t05-023.
  20. Żarkiewicz, K. (2019). Lateral stress changes along the pile skin during axial loading in laboratory test. In Proceedings of the Geotechnical Engineering foundation of the future; Reykjavik, 1–8.
  21. Konkol, J.; Bałachowski, L. (2017). Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method. Stud. Geotech. Mech., 39, doi:10.1515/sgem-2017-0003.
  22. Tovar-Valencia, R.D.; Galvis-Castro, A.; Salgado, R.; Prezzi, M.; Fridman, D. (2022). Experimental measurement of particle crushing around model piles jacked in a calibration chamber. Acta Geotech., 8, doi:10.1007/s11440-022-01681-8.
  23. Henke, S.; Grabe, J. (2006). Simulation of pile driving by 3-dimensional Finite-Element analysis. Proc. 17th Eur. Young Geotech. Eng. Conf.
  24. Haque, M.N.; Abu-Farsakh, M.Y.; Zhang, Z. (2020). Evaluation of pile capacity from CPT and pile setup phenomenon. Int. J. Geotech. Eng., 14, 196–205, doi:10.1080/19386362.2017.1413035.
  25. Eslami, A.; Valikhah, F.; Veiskarami, M.; Salehi, M. (2017). CPT-Based Investigation for Pile Toe and Shaft Resistances Distribution. Geotech. Geol. Eng., 35, 2891–2905, doi:10.1007/s10706-017-0287-8.
  26. Żarkiewicz, K. (2018). Laboratory research of toe resistance based on static pile load tests in different schemes. Civ. Envionmental Eng. Reports, 28, 80–81, doi:10.2478/ceer-2018-0014.
  27. Meyer, Z.; Żarkiewicz, K. (2017). Mechanizm formowania się oporu pobocznicy przy podstawie pala określony na podstawie badań laboratoryjnych. Inżynieria i Bud., R. 73, nr 5.
  28. Żarkiewicz, K.; Meyer, Z. (2016). Nowe spojrzenie na współpracę pala z gruntem w świetle badań laboratoryjnych. Wiadomości Proj. Budownictwa, maj.
  29. Żarkiewicz, K.; Qatrameez, W. (2021). Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors. Sensors, 21, doi:10.3390/s21217214.
  30. PN-EN ISO 14688-1:2018-05. Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description (ISO 14688-1:2017).
  31. Kamal, Z.A.; Arab, M.G.; Dif, A. (2016). Analysis of The arching phenomenon of bored piles in sand. Alexandria Eng. J., 55, 2639–2645. doi:10.1016/j.aej.2016.06.035.
DOI: https://doi.org/10.2478/acee-2023-0041 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 141 - 150
Submitted on: Jan 23, 2023
|
Accepted on: Mar 29, 2023
|
Published on: Oct 20, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Krzysztof Żarkiewicz, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.