Have a personal or library account? Click to login

The Analysis of Pile Skin and Base Resistances Interaction Based on Static Pile Load Test in Experimental Research

Open Access
|Oct 2023

References

  1. Lastiasih, Y.; Sidi, I.D. (2014). Reliability of Estimation Pile Load Capacity Methods. J. Eng. Technol. Sci., 46, 1–16, doi:10.5614/j.eng.technol.sci.2014.46.1.1.
  2. Hasnat, A. (2015). Prithul Saha Ultimate load capacity of axially loaded vertical piles from full scale load test results interpretations applied to 20 case histories., doi:10.13140/2.1.3755.2960.
  3. Wrana, B. (2015). Pile Load Capacity – Calculation Methods. Stud. Geotech. Mech., 37, doi:10.1515/sgem-2015-0048.
  4. Meyer, Z. (2017). Wykorzystanie testu statycznego do prognozy osiadania, mobilizacji podstawy i pobocznicy. In Proceedings of the Naprawy i wzmocnienia konstrukcji budowlanych; Wisła, 303–318.
  5. Meyer, Z.; Żarkiewicz, K. (2015). Analiza współpracy pala z gruntem w dużym zakresie osiadania. In Awarie Budowlane; Szczecin-Międzyzdroje, 405–412.
  6. Meyer, Z.; Żarkiewicz, K. (2018). Skin and Toe Resistance Mobilisation of Pile During Laboratory Static Load Test. Stud. Geotech. Mech, 40, 1–5.
  7. Siemaszko, P.; Meyer, (2019). Z. Static load test curve analysis based on soil field investigations. Bull. Polish Acad. Sci. Tech. Sci., 67, 329–337. doi:10.24425/bpas.2019.128607.
  8. Fioravante, V. (2002). On the shaft friction modeling of non-displacment piles in sand. Japanese Geotech. Soc., 42, 23–33, doi:10.1248/cpb.37.3229.
  9. Guo, Z.; Deng, L. (2018). Field behaviour of screw micropiles subjected to axial loading in cohesive soils. Can. Geotech. J., 55, 34–44, doi:10.1139/cgj-2017-0109.
  10. Gupta, R.C. (2013). Load-Settlement Behavior of Drilled Shafts in Multilayered Deposits of Soils and Intermediate Geomaterials. Geotech. Test. J., 36, 20130016, doi:10.1520/GTJ20130016.
  11. Kim, D.; Jeong, S.; Park, J. (2020). Analysis on shaft resistance of the steel pipe prebored and precast piles based on field load-transfer curves and finite element method. Soils Found., 60, 478–495. doi:10.1016/j.sandf.2020.03.011.
  12. Krasiński, A.; Sieńko, R. (2010). Pomiar pionowego rozkładu siły w palu podczas testów statycznych. In Proceedings of the 56 Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZiTB, 161–168.
  13. Gwizdala, K.; Krasinski, A. (2013). Bearing capacity of displacement piles in layered soils with highly diverse strength parameters. Proc. 18th Int. Conf. Soil Mech. Geotech. Eng, 2739–2742.
  14. Sienko, R.; Bednarski, L.; Kanty, P.; Howiacki, T. (2019). Application of Distributed Optical Fibre Sensor for Strain and Temperature Monitoring within Continuous Flight Auger Columns. IOP Conf. Ser. Earth Environ. Sci., 221. doi:10.1088/1755-1315/221/1/012006.
  15. Buda-Ożóg, L.; Zięba, J.; Sieńkowska, K.; Nykiel, D.; Zuziak, K.; Sieńko, R.; Bednarski, Ł. (2022). Distributed fibre optic sensing: Reinforcement yielding strains and crack detection in concrete slab during column failure simulation. Meas. J. Int. Meas. Confed., 195, doi:10.1016/j.measurement.2022.111192.
  16. Baca, M.; Rybak, J. (2021). Pile base and shaft capacity under various types of loading. Appl. Sci., 11, doi:10.3390/app11083396.
  17. Zarkiewicz, K. (2019). Laboratory Experiment of Soil Vertical Displacement Measurement Near an Axially Loaded Pile. IOP Conf. Ser. Mater. Sci. Eng., 603, 032012, doi:10.1088/1757-899X/603/3/032012.
  18. Wang, Y.; Liu, X.; Sang, S.; Zhang, M.; Wang, P. (2020). A model test for the influence of lateral pressure on vertical bearing characteristics in pile jacking process based on optical sensors. Sensors (Switzerland), 20, doi:10.3390/s20061733.
  19. Lehane, B.M.; White, D.J. (2005). Lateral stress changes and shaft friction for model displacement piles in sand. Can. Geotech. J., 42, 1039–1052, doi:10.1139/t05-023.
  20. Żarkiewicz, K. (2019). Lateral stress changes along the pile skin during axial loading in laboratory test. In Proceedings of the Geotechnical Engineering foundation of the future; Reykjavik, 1–8.
  21. Konkol, J.; Bałachowski, L. (2017). Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method. Stud. Geotech. Mech., 39, doi:10.1515/sgem-2017-0003.
  22. Tovar-Valencia, R.D.; Galvis-Castro, A.; Salgado, R.; Prezzi, M.; Fridman, D. (2022). Experimental measurement of particle crushing around model piles jacked in a calibration chamber. Acta Geotech., 8, doi:10.1007/s11440-022-01681-8.
  23. Henke, S.; Grabe, J. (2006). Simulation of pile driving by 3-dimensional Finite-Element analysis. Proc. 17th Eur. Young Geotech. Eng. Conf.
  24. Haque, M.N.; Abu-Farsakh, M.Y.; Zhang, Z. (2020). Evaluation of pile capacity from CPT and pile setup phenomenon. Int. J. Geotech. Eng., 14, 196–205, doi:10.1080/19386362.2017.1413035.
  25. Eslami, A.; Valikhah, F.; Veiskarami, M.; Salehi, M. (2017). CPT-Based Investigation for Pile Toe and Shaft Resistances Distribution. Geotech. Geol. Eng., 35, 2891–2905, doi:10.1007/s10706-017-0287-8.
  26. Żarkiewicz, K. (2018). Laboratory research of toe resistance based on static pile load tests in different schemes. Civ. Envionmental Eng. Reports, 28, 80–81, doi:10.2478/ceer-2018-0014.
  27. Meyer, Z.; Żarkiewicz, K. (2017). Mechanizm formowania się oporu pobocznicy przy podstawie pala określony na podstawie badań laboratoryjnych. Inżynieria i Bud., R. 73, nr 5.
  28. Żarkiewicz, K.; Meyer, Z. (2016). Nowe spojrzenie na współpracę pala z gruntem w świetle badań laboratoryjnych. Wiadomości Proj. Budownictwa, maj.
  29. Żarkiewicz, K.; Qatrameez, W. (2021). Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors. Sensors, 21, doi:10.3390/s21217214.
  30. PN-EN ISO 14688-1:2018-05. Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description (ISO 14688-1:2017).
  31. Kamal, Z.A.; Arab, M.G.; Dif, A. (2016). Analysis of The arching phenomenon of bored piles in sand. Alexandria Eng. J., 55, 2639–2645. doi:10.1016/j.aej.2016.06.035.
DOI: https://doi.org/10.2478/acee-2023-0041 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 141 - 150
Submitted on: Jan 23, 2023
Accepted on: Mar 29, 2023
Published on: Oct 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Krzysztof Żarkiewicz, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.