Have a personal or library account? Click to login
Strength Reduction Method in the Stability Assessment of Vegetated Slopes Cover

Strength Reduction Method in the Stability Assessment of Vegetated Slopes

Open Access
|Jul 2023

References

  1. Fellenius, W. (1936). Calculation of stability of earth dam. In Transactions. 2nd Congress Large Dams, Washington, DC, 4, 445–462.
  2. Janbu, N. (1959). Stability analysis of slopes with dimensionless parameters. Harvard University, Division of Engineering and Applied Physics.
  3. Morgenstern, N.R. and Price, V.E. (1965) Morgenstern, N. U., & Price, V. E. (1965). The analysis of the stability of general slip surfaces. Geotechnique, 15(1), 79–93.
  4. Spencer, E. (1967) Spencer, E. (1967). A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique, 17(1), 11–26.
  5. Griffiths, D. V., & Fenton, G. A. (2004). Probabilistic slope stability analysis by finite elements. Journal of geotechnical and geoenvironmental engineering, 130(5), 507–518.
  6. Cheng, Y. M., Lansivaara, T., & Wei, W. B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and geotechnics, 34(3), 137–150.
  7. Griffiths, D. V., & Lu, N. (2005). Unsaturated slope stability analysis with steady infiltration or evaporation using elasto plastic finite elements. International journal for numerical and analytical methods in geomechanics, 29(3), 249–267.
  8. Potts, D. M., & Zdravkovic, L. (2012). Accounting for partial material factors in numerical analysis. Géotechnique, 62(12), 1053–1065.
  9. Schneider-Muntau, B., Medicus, G., & Fellin, W. (2018). Strength reduction method in Barodesy. Computers and Geotechnics, 95, 57–67.
  10. Kolymbas, D. (2012). Barodesy: a new hypoplastic approach. International Journal for Numerical and Analytical Methods in Geomechanics, 36(9), 1220–1240.
  11. Medicus, G., Fellin, W., & Kolymbas, D. (2012). Barodesy for clay. Géotechnique Letters, 2(4), 173–180.
  12. Tamagnini, R. (2004). An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique, 54(3), 223–228.
  13. Świtała, B. M., Askarinejad, A., Wu, W., & Springman, S. M. (2018). Experimental validation of a coupled hydro-mechanical model for vegetated soil. Géotechnique, 68(5), 375–385.
  14. Świtała, B. M., & Wu, W. (2018). Numerical modelling of rainfall-induced instability of vegetated slopes. Géotechnique, 68(6), 481–491.
  15. Świtała, B. M., Wu, W., & Wang, S. (2019). Implementation of a coupled hydro-mechanical model for root-reinforced soils in finite element code. Computers and Geotechnics, 112, 197–203.
  16. Świtała, B. M. (2020). Numerical simulations of triaxial tests on soil-root composites and extension to practical problem: rainfall-induced landslide. International Journal of Geomechanics, 20(11), 04020206.
  17. Abaqus (2021). Abaqus Documentation, Dassault Systemes, Providence, RI, USA.
  18. Roscoe, K. & Burland, J. (1968). On the generalized stress-strain behaviour of wet clay. Engineering Plasticity, 535–609.
  19. Atkinson, J. (1993). An introduction to the mechanics of soils and foundations: through critical state soil mechanics. McGraw-Hill Book Company (UK) Ltd.
  20. Jefferies, M. G., & Shuttle, D. A. (2002). Dilatancy in general Cambridge-type models. Géotechnique, 52(9), 625–638.
  21. Askarinejad, A., Beck, A., Casini, F., & Springman, S. M. (2012). Unsaturated hydraulic conductivity of a silty sand with the instantaneous profile method. In Unsaturated Soils: Research and Applications (pp. 215–220). Springer, Berlin, Heidelberg.
  22. Askarinejad, A. (2013). Failure mechanisms in unsaturated silty sand slopes triggered by rainfall (PhD thesis, ETH Zurich), Zurich, Switzerland.
  23. Casini, F., Serri, V., & Springman, S. M. (2013). Hydromechanical behaviour of a silty sand from a steep slope triggered by artificial rainfall: from unsaturated to saturated conditions. Canadian Geotechnical Journal, 50(1), 28–40.
  24. Van Genuchten, M. T. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
  25. Averjanov, S. (1950). About permeability of subsurface soils in case of incomplete saturation, English Collection 7, 19–21.
  26. Jebson, S. (2007). Fact sheet number 3: Water in the atmosphere.
  27. Stokes, A., Douglas, G. B., Fourcaud, T., Giadrossich, F., Gillies, C., Hubble, T., ... & Walker, L. R. (2014). Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners. Plant and Soil, 377(1), 1–23.
  28. Hubble, T. C. T., Docker, B. B., & Rutherfurd, I. D. (2010). The role of riparian trees in maintaining riverbank stability: a review of Australian experience and practice. Ecological Engineering, 36(3), 292–304.
  29. Ji, J., Mao, Z., Qu, W., & Zhang, Z. (2020). Energy-based fibre bundle model algorithms to predict soil reinforcement by roots. Plant and Soil, 446(1), 307–329.
  30. Murgia, I., Giadrossich, F., Mao, Z., Cohen, D., Capra, G. F., & Schwarz, M. (2022). Modeling shallow landslides and root reinforcement: A review. Ecological Engineering, 181, 106671.
  31. Świtała, B. M. (2016), Analysis of Slope Stabilisation by Soil Bioengineering Methods (PhD thesis, University of Natural Resources and Life Sciences), Vienna, Austria.
DOI: https://doi.org/10.2478/acee-2023-0024 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 151 - 159
Submitted on: Jan 13, 2023
Accepted on: Mar 14, 2023
Published on: Jul 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Barbara Świtała, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.