Have a personal or library account? Click to login
Theoretical Probabilistic Nonlinear Analysis of Post-Tensioned Bridge Cross-Sections with the Application of Random Fields Cover

Theoretical Probabilistic Nonlinear Analysis of Post-Tensioned Bridge Cross-Sections with the Application of Random Fields

By:
Open Access
|Jul 2023

References

  1. Li, H., Yang, Z., Li, B., & Wu, J. (2021). A phase-field regularized cohesive zone model for quasi-brittle materials with spatially varying fracture properties. Engineering Fracture Mechanics, 256, 107977.
  2. Ye, X., Li, Q., & Zhang, H. (2022). A simplified method for risk assessment of surface damage of marine reinforced concrete structures. Structural Safety, 99, 102265.
  3. Zhou, H., & Li, J. (2020). Energy-based collapse assessment of concrete structures subjected to random damage evolutions. Probabilistic Engineering Mechanics, 60, 103019.
  4. Dannert, M. M., Faes, M. G. R., Fleury, R. M. N., Fau, A., Nackenhorst, U., & Moens, D. (2021). Imprecise random field analysis for non-linear concrete damage analysis. Mechanical Systems and Signal Processing, 150, 107343.
  5. Most, T., & Bucher, C. (2007). Probabilistic analysis of concrete cracking using neural networks and random fields. Probabilistic Engineering Mechanics, 22(2), 219–229.
  6. Vereecken, E., Botte, W., Lombaert, G., & Caspeele, R. (2023). Influence of the correlation model on the failure probability of a reinforced concrete structure considering spatial variability. Structure and Infrastructure Engineering, 19(4), 510–524.
  7. Zhang, M., Akiyama, M., Shintani, M., Xin, J., & Frangopol, D. M. (2021). Probabilistic estimation of flexural loading capacity of existing RC structures based on observational corrosion-induced crack width distribution using machine learning. Structural Safety, 91, 102098.
  8. Srivaranun, S., Akiyama, M., Masuda, K., Frangopol, D. M., & Maruyama, O. (2022). Random field-based reliability updating framework for existing RC structures incorporating the effect of spatial steel corrosion distribution. Structure and Infrastructure Engineering, 18(7), 967–982.
  9. Montoya, A., Deodatis, G., Betti, R., & Waisman, H. (2015). Physics-Based Stochastic Model to Determine the Failure Load of Suspension Bridge Main Cables. Journal of Computing in Civil Engineering, 29(4), B4014002.
  10. Hajializadeh, D., Stewart, M. G., Enright, B., & OBrien, E. (2016). Spatial time-dependent reliability analysis of reinforced concrete slab bridges subject to realistic traffic loading. Structure & Infrastructure Engineering: Maintenance, Management, Life-Cycle Design & Performance, 12(9), 1137–1152.
  11. https://www.rocscience.com/software/slide2
  12. https://dianafea.com/
  13. Vrouwenvelder, T. (1997). The JCSS probabilistic model code. Structural Safety, 19(3), 245–251.
  14. Bień, J. (2011). Modelling of structure geometry in Bridge Management Systems. Archives of Civil and Mechanical Engineering, 11(3), 519–532.
  15. https://aspekt.katowice.pl/en/
  16. Eurocode 2 (2008): Design of concrete structures - Part 1-1: General rules and rules for buildings.
  17. Owerko, P., Winkelmann, K., & Górski, J. (2020). Application of probabilistic tools to extend load test design of bridges prior to opening. Structure and Infrastructure Engineering, 16(7), 931–948.
  18. Owerko, P., & Winkelmann, K. (2020). Improving the procedure of probabilistic load testing design of typical bridges based on structural response similarities. Archives of Civil Engineering, 66(4), 325–342.
  19. Owerko, P., Kałuża, J., & Wazowski, M. (2021). A proposal to facilitate mandatory bridge load tests with artificial neural network analyses using a digital data aggregation platform. Architecture Civil Engineering Environment, 14(3), 69–78.
  20. Owerko, P., & Honkisz, M. (2017). Innovative technique for identification of prestressing tendons layout in post-tensioned bridges using a probe with MEMS accelerometer. Structure and Infrastructure Engineering, 13(7), 869–881.
  21. Owerko, P., & Owerko, T. (2021). Novel approach to inspections of as-built reinforcement in incrementally launched bridges by means of computer vision based point cloud data. IEEE Sensors Journal, 21(10), 11822–11833.
  22. Siwowski, T., Michalak, E., Kaleta, D., Reizer, E., & Macheta, D. (2018). Katalog typowych konstrukcji drogowych obiektów mostowych i przepustów (Catalog of typical road structures for bridges and culverts). Polish Ministry of Infrastructure.
  23. Gohler, B., & Pearson, B. (2000). Incrementally Launched Bridges, Design and Contruction. Germany: Ernst & Sohn.
  24. Łaziński, P., & Salamak, M. (2011). Identification of computational models in load carrying structures of concrete bridges on the basis of making load tests. Proceedings of the 7th Central European Congress on Concrete Engineering CCC 2011, 353–356. Balatonfüred.
  25. Łaziński P. (2009). Procedura modelowania obiektów rzeczywistych w postaci pewnego typu konktrukcji mostowych (Procedure of modeling real objects in the form of a certain type of bridge structures), (PhD thesis, Silesian University of Technology). Poland Gliwice.
  26. Aït-Mokhtar, A., Belarbi, R., Benboudjema, F., Burlion, N., Capra, B., Carcassès, M., … Yanez-Godoy, H. (2013). Experimental investigation of the variability of concrete durability properties. Cement and Concrete Research, 45, 21–36.
  27. Michałek, J. (2019). Variation in Compressive Strength of Concrete across Thickness of Placed Layer. Materials, 12(13), 2162.
  28. Nowak, A., & Collins, K. (2000). Reliability of Structures (International). McGraw-Hill Higher Education.
  29. Nowak, A. S., & Tharmabala, T. (1988). Bridge Reliability Evaluation Using Load Tests. Journal of Structural Engineering, 114(10), 2268–2279.
  30. Guo, T., Liu, T., & Li, A. (2012). Deflection Reliability Analysis of PSC Box-Girder Bridge under High-Speed Railway Loads. Advances in Structural Engineering, 15(11), 2001–2011.
  31. Robin van der Have (Director). (2017). Random fields for non-linear finite element analysis of reinforced concrete structures with DIANA. Retrieved from https://www.youtube.com/watch?v=VJ360DjlCXg
  32. Vanmarcke, E. (2010). Random Fields: Analysis And Synthesis (Revised, Expanded ed. edition). Singapore; Hackensack, NJ: Wspc.
  33. https://github.com/piotrowerko
DOI: https://doi.org/10.2478/acee-2023-0022 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 127 - 136
Submitted on: Dec 16, 2022
Accepted on: Mar 8, 2023
Published on: Jul 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Piotr Owerko, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.