Have a personal or library account? Click to login
Lime-Stabilized Solid-Waste Blends as Alternative Building Blocks in Construction Cover

Lime-Stabilized Solid-Waste Blends as Alternative Building Blocks in Construction

Open Access
|Jul 2023

References

  1. James, J., & Pandian, P. K. (2016). Valorisation of Sugarcane Bagasse Ash in Manufacture of Lime-Stabilized Blocks. Slovak Journal of Civil Engineering, 24(2), 7–15. https://doi.org/10.1515/sjce-2016-0007
  2. Walker, P. J. (1995). Strength, Durability and Shrinkage Characteristics of Cement Stabilised Soil Blocks. Cement and Concrete Composites, 17(4), 301–310.
  3. Auroville Earth Institute. (2005). Compressed stabilised earth blocks. Online Resource. Retrieved July 30, 2018, from http://www.earth-auroville.com/maintenance/uploaded_pics/cseb.pdf
  4. Villamizar, M. C. N., Araque, V. S., Reyes, C. A. R., & Silva, R. S. (2012). Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks. Construction and Building Materials, 36, 276–286. https://doi.org/10.1016/j.conbuildmat.2012.04.056
  5. Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448–453. https://doi.org/10.1016/j.conbuildmat.2004.08.001
  6. Oyetola, E. B., & Abdullahi, M. (2006). The Use of Rice Husk Ash in Low – Cost Sandcrete Block Production. Leonardo Electronic Journal of Practices and Technologies, 5(8), 58–70.
  7. Lima, S. A., Varum, H., Sales, A., & Neto, V. F. (2012). Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash. Construction and Building Materials, 35(10), 829–837. https://doi.org/10.1016/j.conbuildmat.2012.04.127
  8. Tyagher, S. T., Utsev, J. T., & Adagba, T. (2011). Suitability of Saw Dust Ash-Lime Mixture for Production of Sandcrete Hollow Blocks. Nigerian Journal of Technology, 30(1), 1–6.
  9. James, J., Pandian, P. K., Deepika, K., Venkatesh, J. M., Manikandan, V., & Manikumaran, P. (2016). Cement Stabilized Soil Blocks Admixed with Sugarcane Bagasse Ash. Journal of Engineering, 2016(Article ID 7940239), 1–9. https://doi.org/doi.org/10.1155/2016/7940239
  10. Alavéz-Ramírez, R., Montes-García, P., Martínez-Reyes, J., Altamirano-Juárez, D. C., & Gochi-Ponce, Y. (2012). The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Materials, 34, 296–305. https://doi.org/10.1016/j.conbuildmat.2012.02.072
  11. Greepala, V., & Parichartpreecha, R. (2011). Effects of Using Flyash, Rice Husk Ash and Bagasse Ash as Replacement Materials on the Compressive Strength and Water Absorption of Lateritic Soil-Cement Interlocking Blocks. In Proceedings of 9th Australasian Masonry Conference, 15–18 February (pp. 583–603). Queenstown, New Zealand.
  12. Okafor, F. O., & Ewa, D. E. (2012). Predicting The Compressive Strength of Obudu Earth Blocks Stabilized with Cement Kiln Dust. Nigerian Journal of Technology, 31(2), 149–155.
  13. James, J., & Saraswathy, R. (2020). Performance of Fly Ash - Lime Stabilized Lateritic Soil Blocks Subjected to Alternate Cycles of Wetting and Drying. Civil and Environmental Engineering, 16(1), 30–38. https://doi.org/10.2478/cee-2020-0004
  14. Vijayaraghavan, C., James, J., & Marithangam, S. (2009). Cost Effective Bricks in Construction : A Performance Study. International Journal of Applied Engineering Research, 4(3), 227–234.
  15. Dass, A., & Malhotra, S. K. (1990). Lime-stabilized red mud bricks. Materials and Structures, 23, 252–255.
  16. Kulkarni, A., Raje, S., & Rajgor, M. (2013). Bagasse Ash as an Effective Replacement in Flyash Bricks. International Journal of Engineering Trends and Technology, 4(10), 4484–4489.
  17. Madurwar, M. V, Mandavgane, S. A., & Ralegaonkar, R. V. (2014). Use of Sugarcane Bagasse Ash as Brick Material. Current Science, 107(6), 1044–1051.
  18. Tao, W., Fu, X., Chen, G., & Wu, B. (2014). Study on Producing Sand-lime Bricks with Iron Ore Tailings and Phosphogypsum and Other Solid Wastes. Key Engineering Materials, 576–576, 357–360. https://doi.org/10.4028/www.scientific.net/KEM.575-576.357
  19. Yang, J., Liu, W., Zhang, L., & Xiao, B. (2009). Preparation of load-bearing building materials from autoclaved phosphogypsum. Construction and Building Materials, 23(2), 687–693. https://doi.org/10.1016/j.conbuildmat.2008.02.011
  20. Central Pollution Control Board. (2012). Guidelines for Management and Handling of Phosphogypsum Generated from Phosphoric Acid Plants (Final Draft). New Delhi, India. Retrieved from www.cpcb.nic.in
  21. American Coal Ash Association. (2003). Fly Ash Facts for Highway Engineers. Aurora, CO. Retrieved from https://www.fhwa.dot.gov/pavement/recycling/fafacts.pdf
  22. Sabapathy, Y. K., Balasubramanian, V. B., Shiva Shankari, N., Yeshwant Kumar, A., & Ravichandar, D. (2017). Experimental investigation of surface modified EOF steel slag as coarse aggregate in concrete. Journal of King Saud University - Engineering Sciences, 29(4), 388–393. https://doi.org/10.1016/j.jksues.2016.07.002
  23. James, J., Pandian, P. K., & Switzer, A. S. (2017). Egg Shell Ash as Auxiliary Addendum to Lime Stabilization of an Expansive Soil. Journal of Solid Waste Technology and Management, 43(1), 15–25.
  24. Shen, W., Zhou, M., & Zhao, Q. (2007). Study on lime–fly ash–phosphogypsum binder. Construction and Building Materials, 21(7), 1480–1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
  25. James, J., Arthi, C., Balaji, G., Chandraleka, N., & Kumar, R. H. M. N. (2022). Lime activated flyash phosphogypsum blend as a low cost alternative binder. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03618-2
  26. ASTM. ASTM D 5102 Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures (2009). United States.
  27. Uzoegbo, H. C. (2020). Dry-stack and compressed stabilized earth-block construction. In K. A. Harries & B. Sharma (Eds.), Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications (Second., pp. 305–350). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102704-2.00012-3
  28. BIS. IS 4031 Part 6: Methods Of Physical Tests For Hydraulic Cement Part 6 Determination Of Compressive Strength Of Hydraulic Cement Other Than Masonry Cement (First Revision) (1988). Retrieved from https://ia800400.us.archive.org/0/items/gov.in.is.4031.6.1988/is.4031.6.1988.pdf
  29. BIS. IS 1725: Specification for Soil Based Blocks Used in General Building Construction (1982). India.
  30. BIS. IS: 2185 Concrete masonry units, Part 1: Hollow and solid concrete blocks (2005). India.
  31. BIS. IS:3115 Lime Based Blocks – Specifications (1992). India.
  32. BIS. IS: 12894 - Pulverized Fuel Ash-Lime Bricks – Specification (2002). India.
  33. Thompson, M. R. (1967). Factors Influencing the Plasticity and Strength of Lime Soil Mixtures. University of Illunois Bulletin, 64(100), 1–19.
  34. Sivapullaiah, P. V, Katageri, B., & Herkal, R. N. (2007). Enhancement of Strength of Soft Soils with Fly Ash and Lime. In Procs. of First Sri Lankan Geotechnical Society International Conference on Soil and Rock Engineering, 6–11 August (pp. 1–6). Colombo, Sri Lanka.
  35. Ciancio, D., Beckett, C. T. S., & Carraro, J. A. H. (2014). Optimum lime content identification for lime-stabilised rammed earth. Construction and Building Materials, 53, 59–65. https://doi.org/10.1016/j.conbuildmat.2013.11.077
  36. Jambor, J. (1963). Relation between phase composition, over-all porosity and strength of hardened lime-pozzolana pastes. Magazine of Concrete Research, 15(45), 131–142. https://doi.org/10.1680/macr.1963.15.45.131
  37. Kumar, S., Dutta, R. K., & Mohanty, B. (2014). Engineering Properties of Bentonite Stabilized With Lime and Phosphogypsum. Slovak Journal of Civil Engineering, 22(4), 35–44. https://doi.org/10.2478/sjce-2014-0021
  38. Shen, W., Zhou, M., Ma, W., Hu, J., & Cai, Z. (2009). Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material. Journal of hazardous materials, 164(1), 99–104. https://doi.org/10.1016/j.jhazmat.2008.07.125
  39. Minnesota Pollution Control Agency. (2022). Characteristics of Quicklime and Hydrated Lime (USEPA). Minnesota Stormwater Manual. Retrieved January 9, 2023, from https://stormwater.pca.state.mn.us/index.php?title=Characteristics_of_quicklime_and_hydrated_lime
  40. Holcim. (2022). Flyash Product Specification Sheet. Online Resource. Retrieved January 9, 2023, from https://www.holcim.us/sites/us/files/2022-03/Holcim_FLY_ASH_Spec_Sheet_Jan2022.pdf
  41. Federal Highway Administration. (2016). User Guidelines for Waste and Byproduct Materials in Pavement Construction. FHWA-RD-97-148. Retrieved January 9, 2023, from https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/wg1.cfm
  42. BIS. IS 4326: Earthquake Resistant Design and Construction of Buildings-Code of Practice (Second Revision) (1993). India.
  43. Mashifana, T. P., Okonta, F. N., & Ntuli, F. (2019). Development of low content phosphogypsum waste composites modified by lime-fly ash-basic oxygen furnace slag. Revista Romana de Materiale/Romanian Journal of Materials, 49(2), 294–302.
  44. Pai, R. R., Bakare, M. D., Patel, S., & Shahu, J. T. (2021). Structural Evaluation of Flexible Pavement Constructed with Steel Slag–Fly Ash–Lime Mix in the Base Layer. Journal of Materials in Civil Engineering, 33(6), 04021097. https://doi.org/10.1061/(asce)mt.1943-5533.0003711
  45. James, J., & Pandian, P. K. (2016). Role of Phosphogypsum and Ceramic Dust in Amending the Early Strength Development of a Lime Stabilized Expansive Soil. International Journal of Sustainable Construction Engineering & Technology, 7(2), 38–49.
  46. James, J., & Pandian, P. K. (2016). Plasticity, Swell-Shrink and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil. Advances in Civil Engineering, 2016(Article ID 9798456), 1–10.
  47. Min, Y., Jueshi, Q., & Ying, P. (2008). Activation of fly ash–lime systems using calcined phosphogypsum. Construction and Building Materials, 22(5), 1004–1008. https://doi.org/10.1016/j.conbuildmat.2006.12.005
  48. Borhan, T. M., & Al-Rawi, R. S. (2017). Combined Effect of MgO and SO3 Contents in Cement on Compressive Strength of Concrete. Journal For Engineering Sciences, 9(4), 492–502.
  49. Gonçalves, T., Silva, R. V., De Brito, J., Fernández, J. M., & Esquinas, A. R. (2019). Hydration of reactive MgO as partial cement replacement and its influence on the macroperformance of cementitious mortars. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/9271507
  50. BIS. IS 2250: Preparation and Use of Masonry Mortar (1981). India.
  51. BIS. IS 3466: Specification for Masonry Cement (1988). India.
DOI: https://doi.org/10.2478/acee-2023-0018 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 89 - 99
Submitted on: Jan 31, 2022
Accepted on: Feb 21, 2023
Published on: Jul 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Jijo James, Ayyapakam Ranganathan Gobinathan, Adhimoolam Kannan Balaji, Saravanan Ashwin, Chinnathurai Aravind, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.