References
- Bai, C., Dallasega, P., Orzes, G. & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International journal of production economics, 229, 107776.
- Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston consulting group, 9(1), 54–89.
- Bai, C., Kusi-Sarpong, S. & Sarkis, J. (2017). An implementation path for green information technology systems in the Ghanaian mining industry. Journal of Cleaner Production, 164, 1105–1123.
- Stock, T. & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. procedia CIRP, 40, 536–541.
- Takva Ç., İlerisoy Z. Y., & Takva Y. (2022). Investigation of the Shard Tower within the Scope of Advanced Construction Techniques. In Mediterranean International Conference on Research in Applied Sciences, Antalya, Turkey, 22–24 April, 385-398.
- Ilerisoy, Z. Y., & Takva, Y. (2017). Nanotechnological developments in structural design: Load-bearing materials. Engineering, Technology & Applied Science Research, 7(5), 1900–1903.
- Takva Y., İlerisoy Z. Y., & Takva Ç. (2022). Modular system applications in high-rise buildings. In Mediterranean International Conference on Research in Applied Sciences, Antalya, Turkey, 22–24 April, 399–409.
- İlerisoy, Z. Y., & Başeğmez, M. P. (2018). Conceptual Research of Movement in Kinetic Architecture. Gazi University Journal of Science, 31(2), 342–352.
- Maskuriy, R., Selamat, A., Maresova, P., Krejcar, O. & David, O. O. (2019). Industry 4.0 for the construction industry: Review of management perspective. Economies, 7(3), 68.
- Lasi, H., Fettke, P., Kemper, H. G., Feld, T. & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239–242.
- Fengque, P. E. I., Yifei, T., Fei, H. E. & Dongbo, L. I. (2017). Research on design of the smart factory for forging enterprise in the industry 4.0 environment. Mechanics, 23(1), 146–152.
- Ng, T. C., Lau, S. Y., Ghobakhloo, M., Fathi, M. & Liang, M. S. (2022). The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review. Sustainability, 14(7), 4327.
- Gajdzik, B., Grabowska, S. & Saniuk, S. (2021). A theoretical framework for industry 4.0 and its implementation with selected practical schedules. Energies, 14(4), 940.
- Lovelock, J. (2019). Novacene: The coming age of hyperintelligence. Mit Press.
- Javaid, M., Khan, I. H., Singh, R. P., Rab, S. & Suman, R. (2021). Exploring contributions of drones towards Industry 4.0. Industrial Robot, 49(3), 476–490.
- Gao, Z., Wanyama, T., Singh, I., Gadhrri, A. & Schmidt, R. (2020). From industry 4.0 to robotics 4.0-a conceptual framework for collaborative and intelligent robotic systems. Procedia manufacturing, 46, 591–599.
- Javaid, M., Haleem, A., Singh, R. P. & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics, 1, 58–75.
- Závadská, Z. & Závadský, J. (2020). Quality managers and their future technological expectations related to Industry 4.0. Total Quality Management & Business Excellence, 31(7–8), 717–741.
- Prado, M., Dörstelmann, M., Schwinn, T., Menges, A. & Knippers, J. (2014). Core-less filament winding. In Robotic fabrication in architecture, art and design 2014 (pp. 275–289). Springer, Cham.
- Valente, M., Sibai, A. & Sambucci, M. (2019). Extrusion-based additive manufacturing of concrete products: revolutionizing and remodeling the construction industry. Journal of composites science, 3(3), 88.
- Roch, J. L. (2020). UAV classification and associated mission planning. In Multi-Rotor Platform-Based UAV Systems (pp. 27-44). ISTE.
- Yablonina, M. & Menges, A. (2018, September). Towards the development of fabrication machine species for filament materials. In Robotic fabrication in architecture, art and design (pp. 152-166). Springer, Cham.
- Nouacer, R., Hussein, M., Espinoza, H., Ouhammou, Y., Ladeira, M. & Castiñeira, R. (2020). Towards a framework of key technologies for drones. Microprocessors and Microsystems, 77, 103142.
- Hammad, A. W., da Costa, B. B., Soares, C. A. & Haddad, A. N. (2021). The Use of Unmanned Aerial Vehicles for Dynamic Site Layout Planning in Large-Scale Construction Projects. Buildings, 11(12), 602.
- Vashist, S. & Jain, S. (2019). Location-aware network of drones for consumer applications: Supporting efficient management between multiple drones. IEEE Consumer Electronics Magazine, 8(3), 68–73.
- Sestras, P., Roșca, S., Bilașco, Ș., Naș, S., Buru, S. M., Kovacs, L., ... & Sestras, A. F. (2020). Feasibility assessments using unmanned aerial vehicle technology in heritage buildings: Rehabilitation-restoration, spatial analysis and tourism potential analysis. Sensors, 20(7), 2054.
- Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., ... & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. Ieee Access, 7, 48572–48634.
- Owerko, P., Kałuża, J., & Wazowski, M. (2021). A proposal to facilitate mandatory bridge load tests with artificial neural network analyses using a digital data aggregation platform. Architecture, Civil Engineering, Environment, 14(3), 69–78.
- Tovarovıć, J. Č., Šekularac, J. I., & Šekularac, N. (2016). Modelling of decision-making framework for selection technological adequacy system media facades. Architecture Civil Engineering Environment, 9(3), 55–70.
- Videras Rodríguez, M., Melgar, S. G., Cordero, A. S. & Márquez, J. M. A. (2021). A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Applied Sciences, 11(21), 9966.
- Kang, S., Park, M. W. & Suh, W. (2019). Feasibility study of the unmanned-aerial-vehicle radio-frequency identification system for localizing construction materials on large-scale open sites. Sensors and Materials, 31(5), 1449–1465.
- Moore, G. K. (1979). What is a picture worth? A history of remote sensing/Quelle est la valeur d’une image? Un tour d’horizon de télédétection. Hydrological Sciences Bulletin, 24(4), 477–485.
- Keane, J. F. & Carr, S. S. (2013). A brief history of early unmanned aircraft. Johns Hopkins APL Technical Digest, 32(3), 558–571.
- Cai, G., Lum, K. Y., Chen, B. M. & Lee, T. H. (2010). A brief overview on miniature fixed-wing unmanned aerial vehicles. IEEE ICCA 2010, 285–290.
- Ammar, M. (2016). Aerial Construction: Robotic Fabrication of Tensile Structures with Flying Machines (Doctoral dissertation, ETH Zurich).
- Trubia, S., Curto, S., Severino, A., Arena, F. & Puleo, L. (2021, March). The use of UAVs for civil engineering infrastructures. In AIP Conference Proceedings (Vol. 2343, No. 1, p. 110012). AIP Publishing LLC.
- Kumar, A. & Muhammad, B. (2018, November). On how internet of drones is going to revolutionise the technology application and business paradigms. In 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 405–410). IEEE.
- Hassanalian, M. & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131.
- Chan, K. W., Nirmal, U. & Cheaw, W. G. (2018, November). Progress on drone technology and their applications: A comprehensive review. In AIP Conference Proceedings 2030(1), 020308. AIP Publishing LLC.
- Chamola, V., Kotesh, P., Agarwal, A., Gupta, N. & Guizani, M. (2021). A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques. Ad hoc networks, 111, 102324.
- Alghamdi, Y., Munir, A., & La, H. M. (2021). Architecture, classification, and applications of contemporary unmanned aerial vehicles. IEEE Consumer Electronics Magazine, 10(6), 9–20.
- Contreras, R., Ayala, A. & Cruz, F. (2020). Unmanned aerial vehicle control through domain-based automatic speech recognition. Computers, 9(3), 75.
- Seymour, A. C., Dale, J., Hammill, M., Halpin, P. N. & Johnston, D. W. (2017). Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Scientific reports, 7(1), 1–10.
- Elmeseiry, N., Alshaer, N. & Ismail, T. (2021). A detailed survey and future directions of unmanned aerial vehicles (uavs) with potential applications. Aerospace, 8(12), 363.
- Xia, K., Lee, S. & Son, H. (2020). Adaptive control for multi-rotor UAVs autonomous ship landing with mission planning. Aerospace Science and Technology, 96, 105549.
- Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P. & Zarzycki, H. (2016). Drones and possibilities of their using. J. Civ. Environ. Eng, 6(3), 1–7.
- Clarke, R. (2014). Understanding the drone epidemic. Computer Law & Security Review, 30(3), 230–246.
- Macrina, G., Pugliese, L. D. P., Guerriero, F. & Laporte, G. (2020). Drone-aided routing: A literature review. Transportation Research Part C: Emerging Technologies, 120, 102762.
- Shraim, H., Awada, A. & Youness, R. (2018). A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine, 33(7), 14–33.
- Panagiotou, P. & Yakinthos, K. (2020). Aerodynamic efficiency and performance enhancement of fixed-wing UAVs. Aerospace Science and Technology, 99, 105575.
- Dileep, M. R., Navaneeth, A. V., Ullagaddi, S. & Danti, A. (2020, November). A study and analysis on various types of agricultural drones and its applications. In 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 181-185). IEEE.
- Sanjana, P. & Prathilothamai, M. (2020, March). Drone design for first aid kit delivery in emergency situation. In 2020 6th international conference on advanced computing and communication systems (ICACCS) (pp. 215-220). IEEE.
- McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., ... & Elder, J. H. (2013). Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica, 67(3), 173–180.
- Ayamga, M., Akaba, S. & Nyaaba, A. A. (2021). Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, 167, 120677.
- Zaludin, Z. & Harituddin, A. S. M. (2019, October). Challenges and Trends of Changing from Hover to Forward Flight for a Converted Hybrid Fixed Wing VTOL UAS from Automatic Flight Control System Perspective. In 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET) (pp. 247-252). IEEE.
- Sekander, S., Tabassum, H. & Hossain, E. (2018). Multi-tier drone architecture for 5G/B5G cellular networks: Challenges, trends, and prospects. IEEE Communications Magazine, 56(3), 96–103.
- Alharthi, M., Taha, A. E. M. & Hassanein, H. S. (2019, May). An architecture for software defined drone networks. In ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp. 1–5). IEEE.
- Giones, F. & Brem, A. (2017). From toys to tools: The co-evolution of technological and entrepreneurial developments in the drone industry. Business Horizons, 60(6), 875–884.
- Saha, A., Kumar, A. & Sahu, A. K. (2017, November). FPV drone with GPS used for surveillance in remote areas. In 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 62–67). IEEE.
- Miranda, V. R., Rezende, A., Rocha, T. L., Azpúrua, H., Pimenta, L. C. & Freitas, G. M. (2022). Autonomous Navigation System for a Delivery Drone. Journal of Control, Automation and Electrical Systems, 33(1), 141–155.
- da Silva Ferreira, M. A., Begazo, M. F. T., Lopes, G. C., de Oliveira, A. F., Colombini, E. L. & da Silva Simões, A. (2020). Drone reconfigurable architecture (dra): A multipurpose modular architecture for Unmanned Aerial Vehicles (UAVs). Journal of Intelligent & Robotic Systems, 99(3), 517-534.
- Xin, T. J., Farizuan, R. M., Radhwan, H., Shayfull, Z. & Fathullah, M. (2019, July). Redesign of drone remote control using design for manufacturing and assembly (DFMA) method. In AIP Conference Proceedings (Vol. 2129, No. 1, p. 020159). AIP Publishing LLC.
- Ayamga, M., Tekinerdogan, B. & Kassahun, A. (2021). Exploring the challenges posed by regulations for the use of drones in agriculture in the African context. Land, 10(2), 164.
- Mkiramweni, M. E., Yang, C., Li, J. & Zhang, W. (2019). A survey of game theory in unmanned aerial vehicles communications. IEEE Communications Surveys & Tutorials, 21(4), 3386–3416.
- Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z. & Pham, Q. V. (2021). Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 21(16), 17608–17619.
- Semsch, E., Jakob, M., Pavlicek, D. & Pechoucek, M. (2009, September). Autonomous UAV surveillance in complex urban environments. In 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (Vol. 2, pp. 82–85). IEEE.
- Siebert, S. & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in construction, 41, 1–14.
- Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., ... & Maldague, X. P. (2021). Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. Drones, 5(4), 106.
- Laszlo, B., Agoston, R. & Xu, Q. (2018). Conceptual approach of measuring the professional and economic effectiveness of drone applications supporting forest fire management. Procedia engineering, 211, 8-17.
- Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., Karjalainen, M., Jaakkola, A., ... & Heinonen, T. (2016). Remote sensing methods for power line corridor surveys. ISPRS Journal of Photogrammetry and Remote sensing, 119, 10–31.
- Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S. & Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889.
- Lee, S. & Choi, Y. (2016). Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosystem Engineering, 19(4), 197–204.
- Fernández Hernandez, J., González Aguilera, D., Rodríguez Gonzálvez, P. & Mancera Taboada, J. (2015). Image based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, low cost tool for archaeological applications. Archaeometry, 57(1), 128–145.
- Škrinjar, J. P., Škorput, P. & Furdić, M. (2018, June). Application of unmanned aerial vehicles in logistic processes. In International Conference “New Technologies, Development and Applications” (pp. 359-366). Springer, Cham.
- Li, Y. & Liu, C. (2019). Applications of multirotor drone technologies in construction management. International Journal of Construction Management, 19(5), 401–412.
- Shahmoradi, J., Talebi, E., Roghanchi, P. & Hassanalian, M. (2020). A comprehensive review of applications of drone technology in the mining industry. Drones, 4(3), 34.
- Giordan, D., Adams, M. S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., ... & Troilo, F. (2020). The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bulletin of Engineering Geology and the Environment, 79(7), 3437-3481.
- Pham, Q. V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., ... & Ding, Z. (2020). A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, 116974-117017.
- Balasingam, M. (2017). Drones in medicine – the rise of the machines. International journal of clinical practice, 71(9), e12989.
- Ramadass, L., Arunachalam, S. & Sagayasree, Z. (2020). Applying deep learning algorithm to maintain social distance in public place through drone technology. International Journal of Pervasive Computing and Communications.
- Colomina, I. & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of photogrammetry and remote sensing, 92, 79–97.
- Turner, D., Lucieer, A. & De Jong, S. M. (2015). Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sensing, 7(2), 1736–1757.
- Giordan, D., Manconi, A., Facello, A., Baldo, M., Allasia, P. & Dutto, F. (2015). Brief Communication: The use of an unmanned aerial vehicle in a rockfall emergency scenario. Natural Hazards and Earth System Sciences, 15(1), 163–169.
- Whitehead, K., Moorman, B. J. & Hugenholtz, C. H. (2013). Brief Communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement. The Cryosphere, 7(6), 1879-1884.
- Piermattei, L., Carturan, L., de Blasi, F., Tarolli, P., Dalla Fontana, G., Vettore, A. & Pfeifer, N. (2016). Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes. Earth Surface Dynamics, 4(2), 425-443.
- Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J. & Jawhar, I. (2014, May). UAVs for smart cities: Opportunities and challenges. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 267-273). IEEE.
- Moulianitis, V. C., Thanellas, G., Xanthopoulos, N. & Aspragathos, N. A. (2018, June). Evaluation of UAV based schemes for forest fire monitoring. In International Conference on Robotics in Alpe-Adria Danube Region (pp. 143–150). Springer, Cham.
- Yuan, C., Zhang, Y. & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian journal of forest research, 45(7), 783–792.
- Kullmann, K. (2018). The drone’s eye: applications and implications for landscape architecture. Landscape Research, 43(7), 906–921.
- Christoforou, E. G., & Müller, A. (2016). RUR revisited: perspectives and reflections on modern robotics. International Journal of Social Robotics, 8(2), 237–246.
- Mirjan, A., Gramazio, F., Kohler, M., Augugliaro, F. & D’Andrea, R. (2013). Architectural fabrication of tensile structures with flying machines. Green design, materials and manufacturing processes, 513–518.
- Gramazio, F. & Kohler, M. (2008). Towards a digital materiality. In Manufacturing Material Effects: Rethinking Design and Making Architecture (pp. 103–118). Routledge.
- Han, I. X., Meggers, F. & Parascho, S. (2021). Bridging the collectives: A review of collective human–robot construction. International Journal of Architectural Computing, 19(4), 512–531.
- Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D. & Kovac, M. (2019). A review of collective robotic construction. Science Robotics, 4(28), eaau8479.
- Mueller, M. W. & D’Andrea, R. (2016). Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles. The International Journal of Robotics Research, 35(8), 873–889.
- Mirjan, A., Gramazio, F. & Kohler, M. (2014). Building with flying robots. Fabricate: Negotiating Design and Making, gta-Verlag, Zurich, 266–271.
- Joo, H., Son, C., Kim, K., Kim, K. & Kim, J. (2007, October). A study on the advantages on high-rise building construction which the application of construction robots take (iccas 2007). In 2007 International Conference on Control, Automation and Systems (pp. 1933-1936). IEEE.
- Lindsey, Q., Mellinger, D. & Kumar, V. (2011). Construction of cubic structures with quadrotor teams. Proc. Robotics: Science & Systems VII, 7.
- Lindsey, Q., Mellinger, D. & Kumar, V. (2012). Construction with quadrotor teams. Autonomous Robots, 33(3), 323-336.
- Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., ... & D’Andrea, R. (2014). The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine, 34(4), 46-64.
- Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P., Sherback, M. & D’Andrea, R. (2014). A platform for aerial robotics research and demonstration: The flying machine arena. Mechatronics, 24(1), 41-54.
- Augugliaro, F. & D’Andrea, R. (2013, July). Admittance control for physical human-quadrocopter interaction. In 2013 European Control Conference (ECC) (pp. 1805-1810). IEEE.
- Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F. & Kohler, M. (2012). Aerial robotic construction towards a new field of architectural research. International journal of architectural computing, 10(3), 439–459.
- Augugliaro, F., Mirjan, A., Gramazio, F., Kohler, M. & D’Andrea, R. (2013, November). Building tensile structures with flying machines. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3487–3492). IEEE.
- Mirjan, A., Augugliaro, F., D’Andrea, R., Gramazio, F. & Kohler, M. (2016). Building a bridge with flying robots. In Robotic fabrication in architecture, art and design 2016 (pp. 34–47). Springer, Cham.
- Reichert, S., Schwinn, T., La Magna, R., Waimer, F., Knippers, J. & Menges, A. (2014). Fibrous structures: An integrative approach to design computation, simulation and fabrication for lightweight, glass and carbon fibre composite structures in architecture based on biomimetic design principles. Computer-Aided Design, 52, 27–39.
- Irizarry, J. (2020). Construction 4.0: An innovation platform for the built environment. Routledge.
- Felbrich, B., Prado, M., Saffarian, S., Solly, J., Vasey, L., Knippers, J. & Menges, A. (2017). Multi-machine fabrication: An integrative design process utilising an autonomous UAV and Industrial robots for the fabrication of long-span composite structures.
- Wood, D., Yablonina, M., Aflalo, M., Chen, J., Tahanzadeh, B. & Menges, A. (2018, September). Cyber physical macro material as a UAV [re] configurable architectural system. In Robotic fabrication in architecture, art and design (pp. 320-335). Springer, Cham.
- Kondak, K., Krieger, K., Albu-Schaeffer, A., Schwarzbach, M., Laiacker, M., Maza, I., ... & Ollero, A. (2013). Closed-loop behavior of an autonomous helicopter equipped with a robotic arm for aerial manipulation tasks. International Journal of Advanced Robotic Systems, 10(2), 145.
- Villa, D. K., Brandao, A. S. & Sarcinelli-Filho, M. (2020). A survey on load transportation using multirotor UAVs. Journal of Intelligent & Robotic Systems, 98(2), 267–296.
- Naboni, R. (2022). Cyber-Physical Construction and Computational Manufacturing. In Industry 4.0 for the Built Environment (pp. 515-540). Springer, Cham.
- Khamseh, H. B., Janabi-Sharifi, F. & Abdessameud, A. (2018). Aerial manipulation—A literature survey. Robotics and Autonomous Systems, 107, 221–235.
- Braithwaite, A., Alhinai, T., Haas-Heger, M., McFarlane, E. & Kovač, M. (2018). Tensile web construction and perching with nano aerial vehicles. In Robotics research (pp. 71-88). Springer, Cham.
- Goessens, S., Mueller, C. & Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. Automation in Construction, 94, 458-480.
- Pereira da Silva, N. & Eloy, S. (2021). Robotic Construction: Robotic Fabrication Experiments for the Building Construction Industry. In Sustainability and Automation in Smart Constructions (pp. 97–109). Springer, Cham.
- Solly, J., Früh, N., Saffarian, S., Aldinger, L., Margariti, G. & Knippers, J. (2019, April). Structural design of a lattice composite cantilever. In Structures (Vol. 18, pp. 28–40). Elsevier.
- Yazici, S. & Tanacan, L. (2020). Material-based computational design (MCD) in sustainable architecture. Journal of Building Engineering, 32, 101543.
- Melenbrink, N., Werfel, J. & Menges, A. (2020). Onsite autonomous construction robots: Towards unsupervised building. Automation in construction, 119, 103312.
- Eloy, S. & da Silva, N. P. (2021). The Robotic Dance: A Fictional Narrative of a Construction Built by Drones. In Virtual Aesthetics in Architecture (pp. 121–129). Routledge.
- Toprak, G. K., & Sahil, S. International Agreements On Designing New Buildings In Historic Cities. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 7(4), 471–477.