Have a personal or library account? Click to login

The Importance of Recovery of PGMS from Catalysts – A Case Study of Recycling Network in Poland

Open Access
|Aug 2022

References

  1. Abo Atia, T., & Spooren, J. (2021). Fast microwave leaching of platinum, rhodium and cerium from spent non-milled autocatalyst monolith. Chemical Engineering and Processing – Process Intensification, 164, 108378. https://doi.org/10.1016/j.cep.2021.108378
  2. Antonov, A., Tietz, A., Kirichenko, A., Polyakov, N., Ehrenburg, M., & Botryakova, I. (2020). Electrochlorination method for iron collector recycling. Materials Today: Proceedings, 30. https://doi.org/10.1016/j.matpr.2019.12.395
  3. Bahaloo-Horeh, N., & Mousavi, S. M. (2020). Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. Journal of Hazardous Materials, 400, 123186. https://doi.org/10.1016/j.jhazmat.2020.123186
  4. Ciuła, J., Kozik, V., Generowicz, A., Gaska, K., Bak, A., Paździor, M., & Barbusiński, K. (2020). Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies, 13(23), 6254. https://doi.org/10.3390/en13236254
  5. Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C., & Ekberg, C. (2019). Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation and Recycling, 141, 284–298. https://doi.org/10.1016/j.resconrec.2018.10.041
  6. Generowicz, N. (2020). Overview of selected natural gas drying methods. Architecture, Civil Engineering, Environment, 13(3), 73–83. https://doi.org/10.21307/ACEE-2020-025
  7. Ding, Y., Zheng, H., Zhang, S., Liu, B., Wu, B., & Jian, Z. (2020). Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resources, Conservation and Recycling, 155, 104644. https://doi.org/10.1016/j.resconrec.2019.104644
  8. DIRECTIVE 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 September 2000 on end-of life vehicles
  9. Generowicz, N., & Kulczycka, J. (2020). Recovery of tantalum from different resources. Architecture, Civil Engineering, Environment, 13(4), 79–84. https://doi.org/10.21307/ACEE-2020-031
  10. Eskina, V., Dalnova, O., Filatova, D., Baranovskaya, V., & Karpov, Y. (2020). Direct precise determination of Pd, Pt and Rh in spent automobile catalysts solution by high-resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 165, 105784. https://doi.org/10.1016/j.sab.2020.105784
  11. Sobiecka, E. (2016). Thermal and physicochemical technologies used in hospital incineration fly ash utilization before landfill in Poland. Journal of Chemical Technology and Biotechnology, 91(9), 2457–2461.
  12. Fajar, A. T. N., Hanada, T., & Goto, M. (2021). Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier. Journal of Membrane Science, 629, 119296. https://doi.org/10.1016/j.memsci.2021.119296
  13. Gaska, K., & Wandrasz, A. J. (2008). Mathematical modeling of biomass fuels formation process. Waste Management, 28(6), 973–985. https://doi.org/10.1016/j.wasman.2007.03.025
  14. Generowicz, N., Kulczycka, J., Partyka, M., & Saługa, K. (2021). Key Challenges and Opportunities for an Effective Supply Chain System in the Catalyst Recycling Market–A Case Study of Poland. Resources, 10(2), 13. https://doi.org/10.3390/resources10020013
  15. Home – Precious Metals Management. (n.d.). Retrieved December 21, 2021, from http://www.platinum.matthey.com/
  16. Hong, H.-J., Yu, H., Hong, S., Hwang, J. Y., Kim, S. M., Park, M. S., & Jeong, H. S. (2020). Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals. Carbohydrate Polymers, 228, 115424. https://doi.org/10.1016/j.carbpol.2019.115424
  17. Karim, S., & Ting, Y.-P. (2020). Ultrasound-assisted nitric acid pretreatment for enhanced biorecovery of platinum group metals from spent automotive catalyst. Journal of Cleaner Production, 255, 120199. https://doi.org/10.1016/j.jclepro.2020.120199
  18. Kontogeorgis, G. M., Yakoumis, I. V., Coutsikos, P., & Tassios, D. P. (1997). A generalized expression for the ratio of the critical temperature to the critical pressure with the van der Waals surface area. Fluid Phase Equilibria, 140(1), 145–156. https://doi.org/10.1016/S0378-3812(97)00174-X
  19. Lee, J. Y., Raju, B., Kumar, B. N., Kumar, J. R., Park, H. K., & Reddy, B. R. (2010). Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Separation and Purification Technology, 73(2), 213–218. https://doi.org/10.1016/j.seppur.2010.04.003
  20. Saguru, C., Ndlovu, S., & Moropeng, D. (2018). A review of recent studies into hydrometallurgical methods for recovering PGMs from used catalytic converters. Hydrometallurgy, 182, 44–56. https://doi.org/10.1016/j.hydromet.2018.10.012
  21. Sharma, R., Simonsen, S. B., Morgen, P., & Andersen, S. M. (2019). Inhibition of Ostwald ripening through surface switching species during potentiodynamic dissolution of platinum nanoparticles as an efficient strategy for platinum group metal (PGM) recovery. Electrochimica Acta, 321, 134662. https://doi.org/10.1016/j.electacta.2019.134662
  22. Tang, H., Peng, Z., Li, Z., Ma, Y., Zhang, J., Ye, L., Wang, L., Rao, M., Li, G., & Jiang, T. (2021). Recovery of platinum-group metals from spent catalysts by microwave smelting. Journal of Cleaner Production, 318, 128266. https://doi.org/10.1016/j.jclepro.2021.128266
  23. International Platinium Group Metals Association. THE LIFE CYCLE ASSESSMENT OF PLATINUM GROUP METALS (PGMs) https://ipa-news.de/assets/sustainability/LCA%20Fact%20Sheet_LR.pdf
  24. Tarver, S., Gray, D., Loponov, K., Das, D. B., Sun, T., & Sotenko, M. (2019). Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. International Biodeterioration & Biodegradation, 143, 104724. https://doi.org/10.1016/j.ibiod.2019.104724
  25. Trinh, H. B., Lee, J., Srivastava, R. R., & Kim, S. (2019). Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route. Journal of Hazardous Materials, 379, 120772. https://doi.org/10.1016/j.jhazmat.2019.120772
  26. Vasile, E., Ciocanea, A., Ionescu, V., Lepadatu, I., Diac, C., & Stamatin, S. N. (2021). Making precious metals cheap: A sonoelectrochemical – Hydrodynamic cavitation method to recycle platinum group metals from spent automotive catalysts. Ultrasonics Sonochemistry, 72, 105404. https://doi.org/10.1016/j.ultsonch.2020.105404
  27. Wei, X., Liu, C., Cao, H., Ning, P., Jin, W., Yang, Z., Wang, H., & Sun, Z. (2019). Understanding the features of PGMs in spent ternary automobile catalysts for development of cleaner recovery technology. Journal of Cleaner Production, 239, 118031. https://doi.org/10.1016/j.jclepro.2019.118031
  28. Yakoumis, I., Moschovi, A. M., Giannopoulou, I., & Panias, D. (2018). Real life experimental determination of platinum group metals content in automotive catalytic converters. IOP Conference Series: Materials Science and Engineering, 329, 012009. https://doi.org/10.1088/1757-899X/329/1/012009
  29. Yakoumis, I., Moschovi, A., Panou, M., & Panias, D. (2020). Single-Step Hydrometallurgical Method for the Platinum Group Metals Leaching from Commercial Spent Automotive Catalysts. Journal of Sustainable Metallurgy, 6. https://doi.org/10.1007/s40831-020-00272-9
  30. Zhang, L., Song, Q., Liu, Y., & Xu, Z. (2019). Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper. Journal of Cleaner Production, 239, 118093. https://doi.org/10.1016/j.jclepro.2019.118093
  31. GUS – Bank Danych Lokalnych. (n.d.). Retrieved December 22, 2021, from https://bdl.stat.gov.pl/BDL/metadane/cechy/szukaj?slowo=samochody
DOI: https://doi.org/10.2478/acee-2022-0022 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 149 - 156
Submitted on: Dec 28, 2021
Accepted on: Feb 24, 2022
Published on: Aug 9, 2022
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Natalia GENEROWICZ, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.