Abo Atia, T., & Spooren, J. (2021). Fast microwave leaching of platinum, rhodium and cerium from spent non-milled autocatalyst monolith. Chemical Engineering and Processing – Process Intensification, 164, 108378. https://doi.org/10.1016/j.cep.2021.108378
Antonov, A., Tietz, A., Kirichenko, A., Polyakov, N., Ehrenburg, M., & Botryakova, I. (2020). Electrochlorination method for iron collector recycling. Materials Today: Proceedings, 30. https://doi.org/10.1016/j.matpr.2019.12.395
Bahaloo-Horeh, N., & Mousavi, S. M. (2020). Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. Journal of Hazardous Materials, 400, 123186. https://doi.org/10.1016/j.jhazmat.2020.123186
Ciuła, J., Kozik, V., Generowicz, A., Gaska, K., Bak, A., Paździor, M., & Barbusiński, K. (2020). Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies, 13(23), 6254. https://doi.org/10.3390/en13236254
Generowicz, N., & Kulczycka, J. (2020). Recovery of tantalum from different resources. Architecture, Civil Engineering, Environment, 13(4), 79–84. https://doi.org/10.21307/ACEE-2020-031
Sobiecka, E. (2016). Thermal and physicochemical technologies used in hospital incineration fly ash utilization before landfill in Poland. Journal of Chemical Technology and Biotechnology, 91(9), 2457–2461.
Fajar, A. T. N., Hanada, T., & Goto, M. (2021). Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier. Journal of Membrane Science, 629, 119296. https://doi.org/10.1016/j.memsci.2021.119296
Generowicz, N., Kulczycka, J., Partyka, M., & Saługa, K. (2021). Key Challenges and Opportunities for an Effective Supply Chain System in the Catalyst Recycling Market–A Case Study of Poland. Resources, 10(2), 13. https://doi.org/10.3390/resources10020013
Hong, H.-J., Yu, H., Hong, S., Hwang, J. Y., Kim, S. M., Park, M. S., & Jeong, H. S. (2020). Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals. Carbohydrate Polymers, 228, 115424. https://doi.org/10.1016/j.carbpol.2019.115424
Kontogeorgis, G. M., Yakoumis, I. V., Coutsikos, P., & Tassios, D. P. (1997). A generalized expression for the ratio of the critical temperature to the critical pressure with the van der Waals surface area. Fluid Phase Equilibria, 140(1), 145–156. https://doi.org/10.1016/S0378-3812(97)00174-X
Lee, J. Y., Raju, B., Kumar, B. N., Kumar, J. R., Park, H. K., & Reddy, B. R. (2010). Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Separation and Purification Technology, 73(2), 213–218. https://doi.org/10.1016/j.seppur.2010.04.003
Saguru, C., Ndlovu, S., & Moropeng, D. (2018). A review of recent studies into hydrometallurgical methods for recovering PGMs from used catalytic converters. Hydrometallurgy, 182, 44–56. https://doi.org/10.1016/j.hydromet.2018.10.012
Sharma, R., Simonsen, S. B., Morgen, P., & Andersen, S. M. (2019). Inhibition of Ostwald ripening through surface switching species during potentiodynamic dissolution of platinum nanoparticles as an efficient strategy for platinum group metal (PGM) recovery. Electrochimica Acta, 321, 134662. https://doi.org/10.1016/j.electacta.2019.134662
Tarver, S., Gray, D., Loponov, K., Das, D. B., Sun, T., & Sotenko, M. (2019). Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. International Biodeterioration & Biodegradation, 143, 104724. https://doi.org/10.1016/j.ibiod.2019.104724
Trinh, H. B., Lee, J., Srivastava, R. R., & Kim, S. (2019). Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route. Journal of Hazardous Materials, 379, 120772. https://doi.org/10.1016/j.jhazmat.2019.120772
Vasile, E., Ciocanea, A., Ionescu, V., Lepadatu, I., Diac, C., & Stamatin, S. N. (2021). Making precious metals cheap: A sonoelectrochemical – Hydrodynamic cavitation method to recycle platinum group metals from spent automotive catalysts. Ultrasonics Sonochemistry, 72, 105404. https://doi.org/10.1016/j.ultsonch.2020.105404
Wei, X., Liu, C., Cao, H., Ning, P., Jin, W., Yang, Z., Wang, H., & Sun, Z. (2019). Understanding the features of PGMs in spent ternary automobile catalysts for development of cleaner recovery technology. Journal of Cleaner Production, 239, 118031. https://doi.org/10.1016/j.jclepro.2019.118031
Yakoumis, I., Moschovi, A. M., Giannopoulou, I., & Panias, D. (2018). Real life experimental determination of platinum group metals content in automotive catalytic converters. IOP Conference Series: Materials Science and Engineering, 329, 012009. https://doi.org/10.1088/1757-899X/329/1/012009
Yakoumis, I., Moschovi, A., Panou, M., & Panias, D. (2020). Single-Step Hydrometallurgical Method for the Platinum Group Metals Leaching from Commercial Spent Automotive Catalysts. Journal of Sustainable Metallurgy, 6. https://doi.org/10.1007/s40831-020-00272-9
Zhang, L., Song, Q., Liu, Y., & Xu, Z. (2019). Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper. Journal of Cleaner Production, 239, 118093. https://doi.org/10.1016/j.jclepro.2019.118093