Have a personal or library account? Click to login
Development of an Integrated Software Workflow for District Heating Network Planning: A Structured Methodological Approach Cover

Development of an Integrated Software Workflow for District Heating Network Planning: A Structured Methodological Approach

Open Access
|Jul 2025

References

  1. Agafonkin, V. (2025). Leaflet – an open-source JavaScript library for mobile-friendly interactive maps. https://leafletjs.com/
  2. Banze, T., & Kneiske, T. M. (2024). Open data for energy networks: introducing DAVE—a data fusion tool for automated network generation. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-52199-w
  3. BAFA. (2025). Plattform für Abwärme. Bundesamt für Wirtschaft und Ausfuhrkontrolle. https://www.bfee-online.de/BfEE/DE/Effizienzpolitik/Plattform_fuer_Abwaerme/plattform_fuer_abwaerme_node.html
  4. BDEW. (2024). BDEW/VKU/GEODE-Leitfaden Abwicklung von Standardlastprofilen Gas. Bundesverband der Energie- und Wasserwirtschaft e. V. https://www.bdew.de/media/documents/20240322_LF_SLP_Gas_KoV_XIV_final_clean.pdf
  5. Büttner, C., Amme, J., Endres, J., Malla, A., Schachler, B., & Cußmann, I. (2022). Open modeling of electricity and heat demand curves for all residential buildings in Germany. Energy Informatics, 5(Suppl 1). https://doi.org/10.1186/s42162-022-00201-y
  6. DWD. (2025). Testreferenzjahre (TRY). Deutscher Wetterdienst. https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.html
  7. Edgar. (2025). Schnell zukunftsfähige Energiesysteme planen und optimieren. FI Freiberg Institut für Energie- und Klimaökonomie GmbH. https://go-edgar.de/
  8. ETRS89. (2008). European Terrestrial Reference System 89. https://web.archive.org/web/20090307095956/http://etrs89.ensg.ign.fr/en/
  9. EU Science Hub. (2025). Photovoltaic Geographical Information System (PVGIS). The Joint Research Centre: EU Science Hub. https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en
  10. Fischer, D., Wolf, T., Scherer, J., & Wille-Haussmann, B. (2016). A stochastic bottom-up model for space heating and domestic hot water load profiles for German households. Energy and Buildings, 124, 120–128. https://doi.org/10.1016/j.enbuild.2016.04.069
  11. Fonseca, J. et al. (2025). CityEnergyAnalyst v3.39.2. [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.14617664
  12. Fuchs, M., & Müller, D. (2017). Automated Design and Model Generation for a District Heating Network from OpenStreetMap Data. In Proceedings of Building Simulation 2017: 15th Conference of IBPSA. (pp. 2050–2059) https://doi.org/10.26868/25222708.2017.562
  13. GeoJSON. (2016). GeoJSON. https://geojson.org/
  14. Gonzalez-Castellanos, A., Thakurta, P. G., & Bischi, A. (2018). Flexible unit commitment of a network-constrained combined heat and power system. arXiv preprint. https://doi.org/10.48550/arXiv.1809.09508
  15. GreenDelta. (2025). Sophena. [Computer software]. GreenDelta GmbH. https://github.com/GreenDelta/Sophena/
  16. Herling, M., Kittan, T., Goikoetxea, I., & Kratzsch, A. (2022). EnSySim – THERESAnext: Simulationsumgebung zur Entwicklung Intelligenter Betriebsalgorithmen für Sektorkoppelnde Speicher. IPM. https://ipm.hszg.de/fileadmin/NEU/Redaktion-IPM/Dokumente/Poster/MTPA_202210_TheresaNext_EnSySim.pdf
  17. Hilpert, S., Kaldemeyer, C., Krien, U., Günther, S., Wingenbach, C., & Plessmann, G. (2018). The Open Energy Modelling Framework (oemof) - A new approach to facilitate open science in energy system modelling. Energy Strategy Reviews, 22, 16–25. https://doi.org/10.1016/j.esr.2018.07.001
  18. Hoffmann, S. (2025). Nominatim: Open Source search based on OpenStreetMap data. [Computer software]. https://github.com/osm-search/Nominatim/
  19. Höffner, D., & Glombik, S. (2024). Energy system planning and analysis software—A comprehensive meta-review with special attention to urban energy systems and district heating. Energy, 307. https://doi.org/10.1016/j.energy.2024.132542
  20. Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., & Roehrl, A. (2011). OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy, 39(10), 5850–5870. https://doi.org/10.1016/j.enpol.2011.06.033
  21. Iqony EBSILON. (2025). EBSILON® Professional. Iqony Solutions GmbH. https://www.ebsilon.com/de/
  22. KEA-BW. (2024). Unterlagen zu Vergabe und Betrieb sowie Technikkatalog. KEA-BW Klimaschutz- und Energieagentur Baden-Württemberg GmbH. https://www.keabw.de/waermewende/angebote/downloads
  23. Kumpf, L. (2016). Entwicklung von Referenzlastprofilen für Schulen und Kitas anhand von Realdaten. [Masterarbeit, Technische Universität Darmstadt]. https://energiemanagement.stadt-frankfurt.de/Service/Dokumente/Entwicklung-von-Referenzlastprofilen-fuer-Schulen-und-Kitas.pdf
  24. Lohmeier, D., Cronbach, D., Drauz, S. R., Braun, M., & Kneiske, T. M. (2020). Pandapipes: An Open-Source Piping Grid Calculation Package for Multi-Energy Grid Simulations. Sustainability, 12(23). https://doi.org/10.3390/su12239899
  25. Lombardi, F., Balderrama, S., Quoilin, S., & Colombo, E. (2019). Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model. Energy, 177, 433–444. https://doi.org/10.1016/j.energy.2019.04.097
  26. Lund, H., Thellufsen, J. Z., Østergaard, P. A., Sorknæs, P., Skov, I. R., & Mathiesen, B. V. (2021). EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy, 1. https://doi.org/10.1016/j.segy.2021.100007
  27. OpenStreetMap. (2025). OpenStreetMap. https://www.openstreetmap.org
  28. Panitz, F., Behrends, T., & Stange, P. (2022). Software-supported Investment Optimization for District Heating Supply Systems. In Proceedings of EuroSun 2022 - ISES and IEA SHC International Conference on Solar Energy for Buildings and Industry. https://doi.org/10.18086/eurosun.2022.04.07
  29. Pfeiffer, J. (2025). DistrictHeatingSim. [Computer software]. https://github.com/JonasPfeiffer123/DistrictHeatingSim
  30. Peere, W., & Blanke, T. (2022). GHEtool: An open-source tool for borefield sizing inPython. Journal of Open Source Software, 7(76), 1–4. https://doi.org/10.21105/joss.04406
  31. Python GUIs. (2025). The complete PyQt5 tutorial. https://www.pythonguis.com/pyqt5-tutorial/
  32. SAENA. (2025). Energieportal Sachsen - Themenkarten und Infos. https://www.energieportal-sachsen.de/
  33. Sachsen. (2025). Geothermieatlas Sachsen. https://www.geologie.sachsen.de/geothermieatlas-13914.html
  34. Solites. (2017). ScenocCalc Fernwärme. https://www.scfw.de
  35. Sollich, M., Wack, Y., Salenbien, R., & Blommaert, M. (2025). Decarbonization of existing heating networks through optimal producer retrofit and low-temperature operation. Applied Energy, 378(Part A). https://doi.org/10.1016/j.apenergy.2024.124796
  36. Sporleder, M. (2024). Design optimization of decarbonized district heating systems. [Dissertation, BTU Cottbus-Senftenberg]. https://doi.org/10.26127/BTUOPEN-6852
  37. Sporleder, M., Rath, M., & Ragwitz, M. (2022). Design optimization of district heating systems: A review. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.971912
  38. STANET. (2016). STANET®. [Computer software]. Fischer-Uhrig Engineering GmbH. https://www.stafu.de
  39. TOP-Energy. (2025). TOP-Energy®. [Computer software]. https://www.top-energy.de
  40. VDI. (2025). VDI Standards. https://www.vdi.de/en/home/vdi-standards
  41. VICUS Software. (2025). VICUS Districts. [Computer software]. VICUS Software GmbH. https://vicus-software.com/warmenetzplanung-vicus-districts/
  42. Vieth, J., Westphal, J., & Speerforck, A. (2025). A GIS-based Co-Planning Approach for District Heating Networks. Energy Proceedings, 50, 1–10. https://doi.org/10.46855/energy-proceedings-11423
  43. Wirtz, M. (2023). nPro: A web-based planning tool for designing district energy systems and thermal networks. Energy, 268. https://doi.org/10.1016/j.energy.2022.126575
  44. Wirtz, M., Kivilip, L., Remmen, P., & Müller, D. (2020). 5th Generation District Heating: A novel design approach based on mathematical optimization. Applied Energy, 260. https://doi.org/10.1016/j.apenergy.2019.114158
DOI: https://doi.org/10.2478/acc-2025-0004 | Journal eISSN: 2571-0613 | Journal ISSN: 1803-9782
Language: English
Page range: 48 - 63
Published on: Jul 8, 2025
Published by: Technical University of Liberec
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Jonas Pfeiffer, Matthias Kunick, published by Technical University of Liberec
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.