Banze, T., & Kneiske, T. M. (2024). Open data for energy networks: introducing DAVE—a data fusion tool for automated network generation. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-52199-w
Büttner, C., Amme, J., Endres, J., Malla, A., Schachler, B., & Cußmann, I. (2022). Open modeling of electricity and heat demand curves for all residential buildings in Germany. Energy Informatics, 5(Suppl 1). https://doi.org/10.1186/s42162-022-00201-y
Edgar. (2025). Schnell zukunftsfähige Energiesysteme planen und optimieren. FI Freiberg Institut für Energie- und Klimaökonomie GmbH. https://go-edgar.de/
Fischer, D., Wolf, T., Scherer, J., & Wille-Haussmann, B. (2016). A stochastic bottom-up model for space heating and domestic hot water load profiles for German households. Energy and Buildings, 124, 120–128. https://doi.org/10.1016/j.enbuild.2016.04.069
Fuchs, M., & Müller, D. (2017). Automated Design and Model Generation for a District Heating Network from OpenStreetMap Data. In Proceedings of Building Simulation 2017: 15th Conference of IBPSA. (pp. 2050–2059) https://doi.org/10.26868/25222708.2017.562
Gonzalez-Castellanos, A., Thakurta, P. G., & Bischi, A. (2018). Flexible unit commitment of a network-constrained combined heat and power system. arXiv preprint. https://doi.org/10.48550/arXiv.1809.09508
Hilpert, S., Kaldemeyer, C., Krien, U., Günther, S., Wingenbach, C., & Plessmann, G. (2018). The Open Energy Modelling Framework (oemof) - A new approach to facilitate open science in energy system modelling. Energy Strategy Reviews, 22, 16–25. https://doi.org/10.1016/j.esr.2018.07.001
Höffner, D., & Glombik, S. (2024). Energy system planning and analysis software—A comprehensive meta-review with special attention to urban energy systems and district heating. Energy, 307. https://doi.org/10.1016/j.energy.2024.132542
Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., & Roehrl, A. (2011). OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy, 39(10), 5850–5870. https://doi.org/10.1016/j.enpol.2011.06.033
Lohmeier, D., Cronbach, D., Drauz, S. R., Braun, M., & Kneiske, T. M. (2020). Pandapipes: An Open-Source Piping Grid Calculation Package for Multi-Energy Grid Simulations. Sustainability, 12(23). https://doi.org/10.3390/su12239899
Lund, H., Thellufsen, J. Z., Østergaard, P. A., Sorknæs, P., Skov, I. R., & Mathiesen, B. V. (2021). EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy, 1. https://doi.org/10.1016/j.segy.2021.100007
Panitz, F., Behrends, T., & Stange, P. (2022). Software-supported Investment Optimization for District Heating Supply Systems. In Proceedings of EuroSun 2022 - ISES and IEA SHC International Conference on Solar Energy for Buildings and Industry. https://doi.org/10.18086/eurosun.2022.04.07
Peere, W., & Blanke, T. (2022). GHEtool: An open-source tool for borefield sizing inPython. Journal of Open Source Software, 7(76), 1–4. https://doi.org/10.21105/joss.04406
Sollich, M., Wack, Y., Salenbien, R., & Blommaert, M. (2025). Decarbonization of existing heating networks through optimal producer retrofit and low-temperature operation. Applied Energy, 378(Part A). https://doi.org/10.1016/j.apenergy.2024.124796
Sporleder, M. (2024). Design optimization of decarbonized district heating systems. [Dissertation, BTU Cottbus-Senftenberg]. https://doi.org/10.26127/BTUOPEN-6852
Sporleder, M., Rath, M., & Ragwitz, M. (2022). Design optimization of district heating systems: A review. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.971912
Wirtz, M., Kivilip, L., Remmen, P., & Müller, D. (2020). 5th Generation District Heating: A novel design approach based on mathematical optimization. Applied Energy, 260. https://doi.org/10.1016/j.apenergy.2019.114158