Egger, J., & Masood, T. (2020). Augmented reality in support of intelligent manufacturing – A systematic literature review. Computers & Industrial Engineering, 140. https://doi.org/10.1016/j.cie.2019.106195
Fang, W., Zhang, T., Chen, L., & Hu, H. (2025). A survey on HoloLens AR in support of human-centric intelligent manufacturing. Journal of Intelligent Manufacturing, 36, 35–59. https://doi.org/10.1007/s10845-023-02247-5
Harm, U., Kryk, H., Hampel, U., Kästner, W., Alt, S. & Seeliger, A. (2022). Lab Scale Experimental Studies for Modeling Possible Zinc Removal Efforts in LOCA Situations. In Proceedings of 19th International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 19), Brussels, Belgium
Kästner, W., Alt, S., Seeliger, A., Zacharias, F., Harm, U., Illgen, R., Hampel, U. & Kryk, H. (2020): Modelling thermal-hydraulic effects of zinc borate deposits in the PWR core after LOCA – Experimental strategies and test facilities. atw International Journal for Nuclear Power, 65(6/7), 341–345. ISSN 1431-5254.
Kästner, W., Seeliger, A., Alt, S., Förster, T., Gocht, U. & Zacharias, F. (2023). ATHLET module “Zink Borate” (AZora) – Generic thermohydraulic and physicochemical analyses for the implementation of an ATHLET module for the simulation of thermohydraulic effects of zinc borate deposits in the PWR core. Final Report, Reactor Safety Research-Project No. 150 1585A.
Krepper, E., Cartland-Glover, G., Grahn, A., Weiss, F.-P., Alt, S., Hampel, R., Kästner, W., Kratzsch, A., & Seeliger, A. (2008). Numerical and experimental investigations for insulation particle transport phenomena in water flow. Annals of Nuclear Energy, 35(8), 1564–1579. https://doi.org/10.1016/j.anucene.2008.01.001
Kryk, H., Hoffmann, W., Kästner, W., Alt, S., Seeliger, A., & Renger, S. (2014). Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects. Nuclear Engineering and Design, 280, 570–578. https://doi.org/10.1016/j.nucengdes.2014.09.010
Lindner, F., Reiner, G., & Keil, S. (2025). A behavioral perspective on visualization in manufacturing and operations management: A review, framework, and research agenda. Operations Management Research, 18, 317–352. https://doi.org/10.1007/s12063-024-00534-9
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. In H. Das (Ed.), Proceedings Volume 2351, Telemanipulator and Telepresence Technologies. (pp. 282–292). SPIE. https://doi.org/10.1117/12.197321
Mühlan, K., Przybysz, K. A., Lindner, F., Akrmanová, D., Winkler, D., & Keil, S. (2021). A Review and Implementation Framework of Industrial Augmented Reality. In 2021 26thIEEE International Conference on Emerging Technologies and Factory Automation (ETFA). (pp. 1–4). IEEE. https://doi.org/10.1109/ETFA45728.2021.9613426
Nor, A. A. M., Kassim, M., Minhat, M. S., Ya’acob, N., Azmi, I. N., & Hajar, I. (2024). 3D Augmented Reality on Nuclear Plant Water Coolant Process in RTP Malaysia. In 2024 4thInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). (pp. 1–6). Male, Maldives. https://doi.org/10.1109/ICECCME62383.2024.10796400
Popov, O., Iatsyshyn, A., Sokolov, D., Dement, M., Neklonskyi, I., & Yelizarov, A. (2021). Application of Virtual and Augmented Reality at Nuclear Power Plants. In A. Zaporozhets & V. Artemchuk (Eds.), Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control (SSDC, volume 346). (pp. 243–260). Springer. https://doi.org/10.1007/978-3-030-69189-9_14
Renger, S., Alt, S., Gocht, U., Kästner, W., Seeliger, A., Kryk, H., & Harm, U. (2018). Multiscaled Experimental Investigations of Corrosion and Precipitation Processes After Loss-of-Coolant Accidents in Pressurized Water Reactors. Nuclear Technology, 205(1-2), 248–261. https://doi.org/10.1080/00295450.2018.1499324
Satu, P., Jari, L., Hanna, K., Tomi, P., Marja, L., & Tuisku-Tuuli, S. (2024). Virtual-Reality training solutions for nuclear power plant field operators: A scoping review. Progress in Nuclear Energy, 169. https://doi.org/10.1016/j.pnucene.2024.105104
Tuli, N., Singh, G., Mantri, A., & Sharma, S. (2022). Augmented reality learning environment to aid engineering students in performing practical laboratory experiments in electronics engineering. Smart Learning Environments, 9, 1–20. https://doi.org/10.1186/s40561-022-00207-9
Vásquez-Carbonell, M. (2022). A Systematic Literature Review of Augmented Reality in Engineering Education: Hardware, Software, Student Motivation & Development Recommendations. Digital Education Review, 2022(41), 249–267. https://doi.org/10.1344/der.2022.41.249-267
Yim, H. B., & Seong, P. H. (2010). Heuristic guidelines and experimental evaluation of effective augmented-reality based instructions for maintenance in nuclear power plants. Nuclear Engineering and Design, 240(12), 4096–4102. https://doi.org/10.1016/j.nucengdes.2010.08.023