References
- Egger, J., & Masood, T. (2020). Augmented reality in support of intelligent manufacturing – A systematic literature review. Computers & Industrial Engineering, 140. https://doi.org/10.1016/j.cie.2019.106195
- Fang, W., Zhang, T., Chen, L., & Hu, H. (2025). A survey on HoloLens AR in support of human-centric intelligent manufacturing. Journal of Intelligent Manufacturing, 36, 35–59. https://doi.org/10.1007/s10845-023-02247-5
- Harm, U., Kryk, H., Hampel, U., Kästner, W., Alt, S. & Seeliger, A. (2022). Lab Scale Experimental Studies for Modeling Possible Zinc Removal Efforts in LOCA Situations. In Proceedings of 19th International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 19), Brussels, Belgium
- Harm, U., Kryk, H. & Hampel, U. (2023). Flow-dependent zinc corrosion in boric acid-containing electrolytes. Materials and Corrosion, 74(2), 277–284. https://doi.org/10.1002/maco.202213341
- Kästner, W., Alt, S., Seeliger, A., Zacharias, F., Harm, U., Illgen, R., Hampel, U. & Kryk, H. (2020): Modelling thermal-hydraulic effects of zinc borate deposits in the PWR core after LOCA – Experimental strategies and test facilities. atw International Journal for Nuclear Power, 65(6/7), 341–345. ISSN 1431-5254.
- Kästner, W., Seeliger, A., Alt, S., Förster, T., Gocht, U. & Zacharias, F. (2023). ATHLET module “Zink Borate” (AZora) – Generic thermohydraulic and physicochemical analyses for the implementation of an ATHLET module for the simulation of thermohydraulic effects of zinc borate deposits in the PWR core. Final Report, Reactor Safety Research-Project No. 150 1585A.
- Krepper, E., Cartland-Glover, G., Grahn, A., Weiss, F.-P., Alt, S., Hampel, R., Kästner, W., Kratzsch, A., & Seeliger, A. (2008). Numerical and experimental investigations for insulation particle transport phenomena in water flow. Annals of Nuclear Energy, 35(8), 1564–1579. https://doi.org/10.1016/j.anucene.2008.01.001
- Kryk, H., Hoffmann, W., Kästner, W., Alt, S., Seeliger, A., & Renger, S. (2014). Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects. Nuclear Engineering and Design, 280, 570–578. https://doi.org/10.1016/j.nucengdes.2014.09.010
- Lindner, F., Reiner, G., & Keil, S. (2025). A behavioral perspective on visualization in manufacturing and operations management: A review, framework, and research agenda. Operations Management Research, 18, 317–352. https://doi.org/10.1007/s12063-024-00534-9
- Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. In H. Das (Ed.), Proceedings Volume 2351, Telemanipulator and Telepresence Technologies. (pp. 282–292). SPIE. https://doi.org/10.1117/12.197321
- Mühlan, K., Przybysz, K. A., Lindner, F., Akrmanová, D., Winkler, D., & Keil, S. (2021). A Review and Implementation Framework of Industrial Augmented Reality. In 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). (pp. 1–4). IEEE. https://doi.org/10.1109/ETFA45728.2021.9613426
- Nor, A. A. M., Kassim, M., Minhat, M. S., Ya’acob, N., Azmi, I. N., & Hajar, I. (2024). 3D Augmented Reality on Nuclear Plant Water Coolant Process in RTP Malaysia. In 2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). (pp. 1–6). Male, Maldives. https://doi.org/10.1109/ICECCME62383.2024.10796400
- O’Regan, G. (2022). Concise Guide to Software Engineering. Springer. https://doi.org/10.1007/978-3-031-07816-3
- Popov, O., Iatsyshyn, A., Sokolov, D., Dement, M., Neklonskyi, I., & Yelizarov, A. (2021). Application of Virtual and Augmented Reality at Nuclear Power Plants. In A. Zaporozhets & V. Artemchuk (Eds.), Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control (SSDC, volume 346). (pp. 243–260). Springer. https://doi.org/10.1007/978-3-030-69189-9_14
- Porter, M. E., & Heppelmann, J. E. (2017). Why Every Organization Needs an Augmented Reality Strategy. Harvard Business Review. https://hbr.org/2017/11/why-every-organization-needs-an-augmented-reality-strategy
- Renger, S., Alt, S., Gocht, U., Kästner, W., Seeliger, A., Kryk, H., & Harm, U. (2018). Multiscaled Experimental Investigations of Corrosion and Precipitation Processes After Loss-of-Coolant Accidents in Pressurized Water Reactors. Nuclear Technology, 205(1-2), 248–261. https://doi.org/10.1080/00295450.2018.1499324
- Satu, P., Jari, L., Hanna, K., Tomi, P., Marja, L., & Tuisku-Tuuli, S. (2024). Virtual-Reality training solutions for nuclear power plant field operators: A scoping review. Progress in Nuclear Energy, 169. https://doi.org/10.1016/j.pnucene.2024.105104
- Tuli, N., Singh, G., Mantri, A., & Sharma, S. (2022). Augmented reality learning environment to aid engineering students in performing practical laboratory experiments in electronics engineering. Smart Learning Environments, 9, 1–20. https://doi.org/10.1186/s40561-022-00207-9
- Vásquez-Carbonell, M. (2022). A Systematic Literature Review of Augmented Reality in Engineering Education: Hardware, Software, Student Motivation & Development Recommendations. Digital Education Review, 2022(41), 249–267. https://doi.org/10.1344/der.2022.41.249-267
- Winkler, D., Lindner, F., Mühlan, K., Przybysz, K. A., & Keil, S. (2022). Informationstechnologien der Zukunft – Video- und Augmented-Reality-basierte Montageanleitungen für die technische Bildung. In 15. Ingenieurpädagogische Jahrestagung 2021. https://www.researchgate.net/publication/362125362_Informationstechnologien_der_Zukunft_-_Video-_und_Augmented-Reality-basierte_Montageanleitungen_fur_die_technische_Bildung
- Yim, H. B., & Seong, P. H. (2010). Heuristic guidelines and experimental evaluation of effective augmented-reality based instructions for maintenance in nuclear power plants. Nuclear Engineering and Design, 240(12), 4096–4102. https://doi.org/10.1016/j.nucengdes.2010.08.023
