References
- McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, LyonAR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-3726; DOI:10.1093/eurheartj/ehab368.
- Ibănescu R, Mîțu DA, Goje ID, Goje GI, LighezanDF. History of heart failure definition. Card Fail Rev. 2025;11:e07; DOI:10.15420/CFR.2024.22.
- Lelonek M, Pawlak A, Nessler J, BohdanM, Władysiuk M. Niewydolność serca w Polsce 2014–2021 [Internet]. Warszawa: Agencja Oceny Technologii Medycznych i Taryfikacji; 2023 [cited 2025 Sep 3]. Available from: https://www.niewydolnosc-serca.pl/doc/ANS_raport_01.09_.pdf.
- Roger VL. Epidemiology of heart failure. Circ Res. 2013;113(6):646–59; DOI:10.1161/circresaha.113.300268.
- Katoh M, Komuro J, Inoue S, Nakayama Y, Komuro I. Molecular mechanisms of the failing heart: a fatal regression? JAPSC. 2024;3:e22; DOI:10.15420/JAPSC.2024.07.
- BenjaminEJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, CarsonAP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, FergusonJF, Fornage M, JordanLC, KhanSS, Kissela BM, KnutsonKL, KwanTW, Lackland DT, Lewis TT, LichtmanJH, Longenecker CT, Loop MS, Lutsey PL, MartinSS, Matsushita K, MoranAE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, SampsonUKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528; DOI:10.1161/CIR.0000000000000659.
- Kim AH, Jang JE, HanJ. Current status onthe therapeutic strategies for heart failure and diabetic cardiomyopathy. Biomed Pharmacother. 2022;145:112463; DOI:10.1016/J.BIOPHA.2021.112463.
- Udelson JE, Stevenson LW. The future of heart failure diagnosis, therapy, and management. Circulation. 2016;133(25):2671–86; DOI:10.1161/CIRCULATIONAHA.116.023518.
- Sapna F, Raveena F, Chandio M, Bai K, Sayyar M, Varrassi G, Khatri M, Kumar S, Mohamad T. Advancements in heart failure management: a comprehensive narrative review of emerging therapies. Cureus. 2023;15(25):e46486; DOI:10.7759/CUREUS.46486.
- Ndiaye JF, Nekka F, Craig M. Understanding the mechanisms and treatment of heart failure: quantitative systems pharmacology models with a focus on SGLT2 inhibitors and sex-specific differences. Pharmaceutics. 2023;15(3):1002; DOI:10.3390/PHARMACEUTICS15031002.
- Stretti L, Zippo D, Coats AJS, Anker MS, vonHaehling S, Metra M, Tomasoni D. A year inheart failure: anupdate of recent findings. ESC Heart Fail. 2021;8(6):4370–93; DOI:10.1002/EHF2.13760.
- Gager GM, vonLewinski D, Sourij H, Jilma B, EyiletenC, Filipiak K, HülsmannM, Kubica J, Postula M, Siller-Matula JM. Effects of SGLT2 inhibitors on ion homeostasis and oxidative stress associated mechanisms in heart failure. Biomed Pharmacother. 2021;143:112169; DOI:10.1016/j. biopha.2021.112169.
- Wright EM. SGLT2 inhibitors: physiology and pharmacology. Kidney360. 2021;2(12):2027–37; DOI:10.34067/kid.0002772021.
- Schiopu D, Devriendt A, Vyve CV, Schiopu O, Antonescu D, Illés TS. Promoting regeneration in degenerative disc disease. Maedica (Bucur). 2024;19(2):342-9; DOI:10.26574/maedica.2024.19.2.342.
- Lingli X, Wenfang X. Characteristics and molecular mechanisms through which SGLT2 inhibitors improve metabolic diseases: A mechanism review. Life Sci. 2022;300:120543; DOI:10.1016/J.LFS.2022.120543.
- Upadhyay A. SGLT2 inhibitors and kidney protection: mechanisms beyond tubuloglomerular feedback. Kidney360. 2024;5(5):771–82; DOI:10.34067/KID.0000000000000425.
- BrownE, Heerspink HJL, CuthbertsonDJ, Wilding JPH. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. The Lancet. 2021;398(10296):262–76; DOI:10.1016/s0140-6736(21)00536-5.
- Chawla G, Chaudhary KK. A complete review of empagliflozin: Most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes Metab Syndr. 2019;13(3):2001–8; DOI:10.1016/J.DSX.2019.04.035.
- Htoo PT, Tesfaye H, Schneeweiss S, Wexler DJ, Everett BM, GlynnRJ, Kim SC, Najafzadeh M, KoenemanL, Farsani SF, Déruaz-Luyet A, Paik JM, Patorno E. Comparative effectiveness of empagliflozinvs liraglutide or sitagliptin in older adults with diverse patient characteristics. JAMA Netw Open. 2022;5(12):e2237606; DOI:10.1001/JAMANETWORKOPEN.2022.37606.
- Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner–La Rocca H-P, Choi D-J, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone S V., Piña IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, CarsonP, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, BrueckmannM, Pocock SJ, Zannad F, Packer M. Empagliflozininheart failure with a preserved ejectionfraction. N Engl J Med. 2021;385(16):1451–61; DOI:10.1056/nejmoa2107038.
- Kosiborod MN, AngermannCE, Collins SP, Teerlink JR, Ponikowski P, Biegus J, Comin-Colet J, Ferreira JP, Mentz RJ, Nassif ME, Psotka MA, Tromp J, BrueckmannM, Blatchford JP, Salsali A, Voors AA. Effects of empagliflozin on symptoms, physical limitations, and quality of life in patients hospitalized for acute heart failure: results from the EMPULSE trial. Circulation. 2022;146(4):279–88; DOI:10.1161/circulationaha.122.059725.
- Khalid Z, Patel P. Canagliflozin. Compr Med Chem III. 2024;8(1):349–65; DOI:10.1016/B978-0-12-409547-2.12446-1.
- Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, CharytanDM, Edwards R, Agarwal R, Bakris G, Bull S, CannonCP, Capuano G, Chu P-L, de Zeeuw D, Greene T, LevinA, Pollock C, Wheeler DC, YavinY, Zhang H, ZinmanB, Meininger G, Brenner BM, Mahaffey KW. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(23):2295–306; DOI:10.1056/NEJMOA1811744.
- Januzzi JL, Xu J, Li JW, Shaw W, Oh R, Pfeifer M, Butler J, Sattar N, Mahaffey KW, Neal B, HansenMK. Effects of canagliflozinonamino-terminal pro–B-type natriuretic peptide: implications for cardiovascular risk reduction. J Am Coll Cardiol. 2020;76(17):2076–85; DOI:10.1016/j. jacc.2020.09.004.
- Cosentino F, CannonCP, Cherney DZI, Masiukiewicz U, Pratley R, Dagogo-Jack S, Frederich R, Charbonnel B, Mancuso J, Shih WJ, Terra SG, Cater NB, Gantz I, McGuire DK. Efficacy of ertugliflozinonheart failure–related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease: results of the VERTIS CV trial. Circulation. 2020;142(22):2205; DOI:10.1161/CIRCULATIONAHA.120.050255.
- Kang DH, Park SJ, ShinSH, Hwang IC, YoonYE, Kim HK, Kim M, Kim MS, YunSC, Song JM, Kang SM. Ertugliflozinfor functional mitral regurgitationassociated with heart failure: EFFORT trial. Circulation. 2024;149(17):1865–74; DOI:10.1161/CIRCULATIONAHA.124.069144.
- Wang X, Wang Z, Liu D, Jiang H, Cai C, Li G, Yu G. Canagliflozinprevents lipid accumulation, mitochondrial dysfunction, and gut microbiota dysbiosis in mice with diabetic cardiovascular disease. Front Pharmacol. 2022;13(1):839640; DOI:10.3389/fphar.2022.839640.
- Peikert A, Martinez FA, VaduganathanM, Claggett BL, Kulac IJ, Desai AS, Jhund PS, De Boer RA, Demets D, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Shah SJ, Katova T, Merkely B, Vardeny O, Wilderäng U, Lindholm D, PeterssonM, Langkilde AM, McMurray JJV, SolomonSD. Efficacy and safety of dapagliflozininheart failure with mildly reduced or preserved ejection fraction according to age: the DELIVER trial. Circ Heart Fail. 2022;15(6):E010080; DOI:10.1161/CIRCHEARTFAILURE.122.010080.
- MosenzonO, Wiviott SD, Heerspink HJL, Dwyer JP, CahnA, Goodrich EL, Rozenberg A, Schechter M, Yanuv I, Murphy SA, Zelniker TA, Gause-NilssonIAM, Angkilde AM, FredrikssonM, JohanssonPA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS, Raz I. The effect of dapagliflozinonalbuminuria inDECLARE-TIMI 58. Diabetes Care. 2021;44(8):1805–15; DOI:10.2337/DC21-0076.
- Fatima E, IrfanH, Fatima F, JainJ, RehmanOU, Sehar A, Ahmad B, Kumari S, Akilimali A. “Is sotagliflozina ‘wonder drug’? A review of its impact on cardiovascular, diabetic, renal, neuroprotective, and hepatic outcomes.” Ann Med Surg. 2025; 87(6):3700-6; DOI:10.1097/MS9.0000000000003357.
- Koufakis T, Mustafa OG, Tsimihodimos V, AjjanRA, Kotsa K. Insights into the results of sotagliflozin cardiovascular outcome trials: is dual inhibitionthe cherry onthe cake of cardiorenal protection? Drugs. 2021;81(12):1365–71; DOI:10.1007/S40265-021-01559-1.
- Aggarwal R, Bhatt DL, Szarek M, CannonCP, Leiter LA, Inzucchi SE, Lopes RD, McGuire DK, Lewis JB, Riddle MC, Davies MJ, Banks P, Carroll AK, Scirica BM, Ray KK, Kosiborod MN, Cherney DZI, Udell JA, Verma S, MasonRP, Pitt B, Steg PG. Effect of sotagliflozinonmajor adverse cardiovascular events: a prespecified secondary analysis of the SCORED randomised trial. Lancet Diabetes Endocrinol. 2025;13(4):321–32; DOI:10.1016/S2213-8587(24)00362-0.
- Pitt B, Bhatt DL, Szarek M, CannonCP, Leiter LA, McGuire DK, Lewis JB, Riddle MC, Voors AA, Metra M, Lund LH, Komajda M, Testani JM, Wilcox CS, Ponikowski P, Lopes RD, Ezekowitz JA, SunF, Davies MJ, Verma S, Kosiborod MN, Steg PG. Effect of sotagliflozinonearly mortality and heart failure-related events: a post hoc analysis of SOLOIST-WHF. JACC Heart Fail. 2023;11(9):879–89; DOI:10.1016/J.JCHF.2023.05.026.
- Nowocien P, Kordylewska-Kubus A, Paszkiewicz I. Mikroangiopatia płucna w przebiegu cukrzycy. In: Nyćkowiak J, editor. Badania i rozwój młodych naukowców w Polsce. Nauki medyczne i auki o zdrowiu – część I [Internet]. Poznan: Młodzi Naukowcy; 2022 [cited 2025 Sep 14]. p. 22-27. Available from: https://www.researchgate.net/publication/362231814_Mikroangiopatia_plucna_w_przebiegu_cukrzycy#pf16.
- Kulik A, Rozentryt P. Nowe spojrzenie na mechanizmy działania blokerów kotransportera sodowo-glukozowego typu 2. Lekarz POZ. 2023;9(2):71-6.
- Pierzchała E, Szydlarska D, Pawlak A. Confronting medical students’ right to education with patients’ right to dignity and intimacy. Between didactics and the will of the patient. PIM MSWiA. 2024;1(1):8-16; DOI: 10.53266/ZNPIM-00015-2023-02.
- Ala M. SGLT2 Inhibitionfor cardiovascular diseases, chronic kidney disease, and NAFLD. Endocrinology. 2021;162(12):bqab157; DOI:10.1210/ENDOCR/BQAB157.
- Abdelgani S, Khattab A, Adams J, Abu-Farha M, Daniele G, Al-Mulla F, Prato S Del, Defronzo RA, Abdul-Ghani M. Distinct mechanisms responsible for the increase inglucose productionand ketone formationcaused by empagliflozin in T2DM patients. diabetes care. 2023;46(4):978; DOI:10.2337/DC22-0885.
- Manolis AS, Manolis TA, Manolis AA. Ketone bodies and cardiovascular disease: an alternate fuel source to the rescue. Int J Mol Sci. 2023;24(7):3534; DOI:10.3390/IJMS24043534.
- Goedeke L, Ma Y, Gaspar RC, Nasiri A, Lee J, Zhang D, Galsgaard KD, Hu X, Zhang J, Guerrera N, Li X, LaMoia T, Hubbard BT, Haedersdal S, Wu X, Stack J, Dufour S, Butrico GM, KahnM, Perry RJ, Cline GW, Young LH, ShulmanGI. SGLT2 inhibitionalters substrate utilizationand mitochondrial redox in healthy and failing rat hearts. J Clin Invest. 2024;134(24):e176708; DOI:10.1172/JCI176708.
- Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, Xiao H, Yu H, Zheng Y, Liang Y, Jiang C, ChenG, Du D, Zheng W, Wang S, Gong M, ChenY, TianR, Li T. Targeting Mitochondria-inflammationcircuit by β-hydroxybutyrate mitigates HFpEF. Circ Res. 2021;128(2):232–45; DOI:10.1161/CIRCRESAHA.120.317933.
- WatsonWD, GreenPG, Lewis AJM, ArvidssonP, De Maria GL, ArhedenH, Heiberg E, Clarke WT, Rodgers CT, Valkovič L, Neubauer S, Herring N, Rider OJ. Retained metabolic flexibility of the failing human heart. Circulation. 2023;148(2):109–23; DOI:10.1161/CIRCULATIONAHA.122.062166.
- Karwi QG, SunQ, Lopaschuk GD. The Contributionof cardiac fatty acid oxidation to diabetic cardiomyopathy severity. Cells. 2021;10(11):3259; DOI:10.3390/CELLS10113259.
- Kolb H, Kempf K, Röhling M, Lenzen-Schulte M, Schloot NC, MartinS. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 2021;19(1):1–15; DOI:10.1186/S12916-021-02185-0.
- Bergstrom JD. The lipogenic enzyme acetoacetyl-CoA synthetase and ketone body utilizationfor denovo lipid synthesis, a review. J Lipid Res. 2023;64(5):100407; DOI:10.1016/j.jlr.2023.100407.
- Saucedo-Orozco H, Voorrips SN, de Boer RA, Westenbrink BD, Yurista SR. SGLT2 inhibitors and ketone metabolism inheart failure. J Lipid Atheroscler. 2022;11(1):1; DOI:10.12997/JLA.2022.11.1.1.
- Herrera A, Mite T, Cedeno D, LoonV, Renal J, Wagner N, Wagner K-D, Vargas-Delgado AP, Arteaga Herrera E, Tumbaco Mite C, Delgado Cedeno P, Cristina Van Loon M, Badimon JJ. Renal and cardiovascular metabolic impact caused by ketogenesis of the SGLT2 inhibitors. Int J Mol Sci. 2023;24(7):4144; DOI:10.3390/IJMS24044144.
- Szekeres Z, Toth K, Szabados E. The effects of SGLT2 inhibitors on lipid metabolism. Metabolites. 2021;11(2):87; DOI:10.3390/METABO11020087.
- Ferreira JP, Butler J, Zannad F, Filippatos G, Schueler E, Steubl D, Zeller C, Januzzi JL, Pocock S, Packer M, Anker SD. Mineralocorticoid receptor antagonists and empagliflozin in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2022;79(10):1129–37; DOI:10.1016/J.JACC.2022.01.029.
- Packer M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, Rocca HPB La, Janssens S, Tsutsui H, Zhang J, BrueckmannM, Jamal W, CottonD, Iwata T, Schnee J, Zannad F. Influence of neprilysin inhibition on the efficacy and safety of empagliflozin in patients with chronic heart failure and a reduced ejectionfraction: the EMPEROR-Reduced trial. Eur Heart J. 2021;42(6):671-680; DOI:10.1093/EURHEARTJ/EHAA968.
- Myhre PL, VaduganathanM, Claggett B, Packer M, Desai AS, Rouleau JL, Zile MR, Swedberg K, Lefkowitz M, Shi V, McMurray JJV, SolomonSD. B-type natriuretic peptide during treatment with sacubitril/valsartan: the PARADIGM-HF trial. J Am Coll Cardiol. 2019;73(10):1264–72; DOI:10.1016/j.jacc.2019.01.018.
- Nicolas D, Patel P, Reed M. Sacubitril-valsartan. Pharma-Kritik. 2024;38(2):5–7; DOI:10.1310/hpj5011-1025.
- Banerjee M, Maisnam I, Pal R, Mukhopadhyay S. Mineralocorticoid receptor antagonists with sodium–glucose co-transporter-2 inhibitors inheart failure: a meta-analysis. Eur Heart J. 2023;44(37):3686–96; DOI:10.1093/EURHEARTJ/EHAD522.
- ChenJ, Jiang C, Guo M, Zeng Y, Jiang Z, Zhang D, Tu M, TanX, YanP, Xu XM, Long Y, Xu Y. Effects of SGLT2 inhibitors oncardiac functionand health status in chronic heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol. 2024;23(1):1–13; DOI:10.1186/s12933-023-02042-9.
- VaduganathanM, Sattar N, Xu J, Butler J, Mahaffey KW, Neal B, Shaw W, Rosenthal N, Pfeifer M, HansenMK, Januzzi JL. Stress cardiac biomarkers, cardiovascular and renal outcomes, and response to canagliflozin. J Am Coll Cardiol. 2022;79(4):432–44; DOI:10.1016/j. jacc.2021.11.027.
- Darwish D, Kumar P, Urs K, Dave S. Impact of SGLT-2 inhibitors on biomarkers of heart failure. Cells. 2025;14(5):919; DOI:10.3390/CELLS14120919.
- Trum M, Riechel J, Wagner S. Cardioprotectionby sglt2 inhibitors – does it all come downto Na+ ? Int J Mol Sci. 2021;22(15):7976; DOI:10.3390/ijms22157976.
- Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors inheart failure: Evidence for potential off-target effects. J Mol Cell Cardiol. 2022;167(C):17–31; DOI:10.1016/j.yjmcc.2022.03.005.
- Chung YJ, Park KC, Tokar S, EykynTR, Fuller W, Pavlovic D, Swietach P, Shattock MJ. Off-target effects of sodium-glucose co-transporter 2 blockers: Empagliflozindoes not inhibit Na+/H+exchanger-1 or lower [Na+] inthe heart. Cardiovasc Res. 2021;117(14):2794–806; DOI:10.1093/cvr/cvaa323.
- ChenS, Wang Q, Bakker D, Hu X, Zhang L, vander Made I, Tebbens AM, Kovácsházi C, Giricz Z, Brenner GB, Ferdinandy P, Schaart G, Gemmink A, Hesselink MKC, Rivaud MR, Pieper MP, HollmannMW, Weber NC, Balligand JL, Creemers EE, Coronel R, Zuurbier CJ. Empagliflozinprevents heart failure through inhibitionof the NHE1-NO pathway, independent of SGLT2. Basic Res Cardiol. 2024;119(8):751–72; DOI:10.1007/s00395-024-01067-9.
- Jiang K, Xu Y, Wang D, ChenF, Tu Z, QianJ, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell. 2022;13(4):336–59; DOI:10.1007/s13238-020-00809-4.
- David C. Hutchings. Background calcium influx inarrhythmia: lead actor or extra? J Physiol. 2022;600(11):2545–6; DOI:10.1113/JP283032.
- Wang M, Preckel B, Zuurbier CJ, Weber NC. Effects of SGLT2 inhibitors on ion channels in heart failure: focus on the endothelium. Basic Res Cardiol. 2025;120(4):779-798 DOI:10.1007/s00395-025-01115-y.
- VallonV, Verma S. Effects of SGLT2 Inhibitors onkidney and cardiovascular function. Annu Rev Physiol. 2025;53(1):52; DOI:10.1146/annurev-physiol-031620.
- Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, CarsonP, Januzzi J, Verma S, Tsutsui H, BrueckmannM, Jamal W, Kimura K, Schnee J, Zeller C, CottonD, Bocchi E, Böhm M, Choi D-J, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca H-P, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde M-F, Spinar J, Squire I, Taddei S, Wanner C, Zannad F. Cardiovascular and renal outcomes with empagliflozin inheart failure. N Engl J Med. 2020;383(15):1413–24; DOI:10.1056/nejmoa2022190.
- González A, Richards AM, de Boer RA, Thum T, ArfstenH, HülsmannM, Falcao-Pires I, Díez J, Foo RSY, ChanMY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, BenGal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, EmdinM, Jankowska EA, GustafssonF, Hill L, Jaarsma T, Januzzi JL, Jhund PS, LopatinY, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, VanLinthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling – part 1: from cells and tissues to circulating biomarkers. A review from the study group onbiomarkers of the heart failure associationof the EuropeanSociety of Cardiology. Eur J Heart Fail. 2022;24 (7):927–43; DOI:10.1002/ejhf.2493.
- Kruszewska J, Cudnoch-Jedrzejewska A, Czarzasta K. Remodeling and fibrosis of the cardiac muscle in the course of obesity – pathogenesis and involvement of the extracellular matrix. Int J Mol Sci. 2022;23(8):4195; DOI:10.3390/ijms23084195.
- Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T, Namba Y, Yoshida M, Sugiyama H, Ito H. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci. 2022;23(7):3587; DOI:10.3390/ijms23073587.
- Xu L, Pagano J, Chow K, Oudit GY, Haykowsky MJ, Mikami Y, Howarth AG, White JA, Howlett JG, Dyck JRB, AndersonTJ, Ezekowitz JA, Thompson RB, Paterson DI. Cardiac remodelling predicts outcome in patients with chronic heart failure. ESC Heart Fail. 2021;8(6):5352–62; DOI:10.1002/ehf2.13626.
- Snelders M, Yildirim M, Danser AHJ, vander Pluijm I, Essers J. The Extracellular Matrix and Cardiac Pressure Overload: Focus onNovel Treatment Targets. Cells. 2024;13(20):1685; DOI:10.3390/cells13201685.
- Piek A, de Boer RA, Silljé HHW. The fibrosis-cell death axis inheart failure. Heart Fail Rev. 2016;21(2):199–211; DOI:10.1007/s10741-016-9536-9.
- Shah AK, Bhullar SK, ElimbanV, Dhalla NS. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. antioxidants. 2021;10(6):931; DOI:10.3390/antiox10060931.
- ChenB, Jing GUO, Hongmei YE, Wang X, Feng Y. Role and molecular mechanisms of SGLT2 inhibitors in pathological cardiac remodeling (Review). Mol Med Rep. 2024;29(1):13197; DOI:10.3892/mmr.2024.13197.
- Olgar Y, Tuncay E, Degirmenci S, Billur D, Dhingra R, Kirshenbaum L, Turan B. Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca2+ homeostasis and promotes cardiac dysfunction. J Cell Mol Med. 2020;24(15):8567–78; DOI:10.1111/jcmm.15483.
- Li C, Zhang J, Xue M, Li X, HanF, Liu X, Xu L, Lu Y, Cheng Y, Li T, Yu X, SunB, Chen L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15; DOI:10.1186/s12933-019-0816-2.
- Jhuo SJ, LinYH, Liu IH, LinTH, Wu BN, Lee KT, Lai WT. Sodium Glucose cotransporter 2 (SGLT2) inhibitor ameliorate metabolic disorder and obesity induced cardiomyocyte injury and mitochondrial remodeling. Int J Mol Sci. 2023;24(7):6842; DOI:10.3390/ijms24076842.
- Shao Q, Meng L, Lee S, Tse G, Gong M, Zhang Z, Zhao J, Zhao Y, Li G, Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019;18(1):165; DOI:10.1186/s12933-019-0964-4.
- Weber L, Pilz P, Baumgartner N, Szabo P, Arnold Z, Dostal C, Kiss A, Podesser B. Dapagliflozin alleviates left ventricular hypertrophy and cardiac dysfunction in mice. Cardiovasc Res. 2022;118(S1):cvac066.097; DOI:10.1093/cvr/cvac066.097.
- Pastore MC, Stefanini A, Mandoli GE, Piu P, Diviggiano EE, Iuliano MA, Carli L, Marchese A, Martini L, Pecere A, Cavigli L, GiacominE, Pagliaro A, Righini FM, Dini CS, Aboumarie HS, Focardi M, D’Ascenzi F, Valente S, Cameli M. Dapagliflozin effects on cardiac deformation in heart failure and secondary Clinical Outcome. JACC Cardiovasc Imaging. 2024;17(12):1399–408; DOI:10.1016/j.jcmg.2024.05.014.
- Pascual-Figal DA, Zamorano JL, Domingo M, Morillas H, Nuñez J, Cobo Marcos M, Riquelme-Pérez A, Teis A, Santas E, Caro-Martinez C, Pinilla JM, Rodriguez-Palomares JF, Dobarro D, Restrepo-Córdoba MA, González-Juanatey JR, Bayés Genís A, Investigators D-MS. Impact of dapagliflozin on cardiac remodelling in patients with chronic heart failure: The DAPA-MODA study. Eur J Heart Fail. 2023;25(8):1352–60; DOI:10.1002/ejhf.2884.
- Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, Vargas-Delgado AP, Mancini D, Sartori S, Atallah-Lajam F, Giannarelli C, Macaluso F, Lala A, Sanz J, Fuster V, Badimon JJ. Mechanistic insights of empagliflozininnondiabetic patients with HFrEF. JACC Heart Fail. 2021;9(7):578–89; DOI:10.1016/j.jchf.2021.04.014.
- Santos-Gallego CG, Requena-Ibanez JA, Antonio RS, Garcia-Ropero A, Ishikawa K, Watanabe S, Picatoste B, Vargas-Delgado AP, Flores-Umanzor EJ, Sanz J, Fuster V, BadimonJJ. Empagliflozinameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure. JACC Cardiovasc Imaging. 2021;14(2):393–407; DOI:10.1016/j.jcmg.2020.07.042.
- Andreadou I, Bell RM, Bøtker HE, Zuurbier CJ. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochim Biophys Acta Mol Basis Dis. 2020;1866(9):165770; DOI:10.1016/j. bbadis.2020.165770.
- Carberry J, Petrie MC, Lee MMY, Brooksbank K, Campbell RT, Good R, Jhund PS, KellmanP, Lang NN, MangionK, Mark PB, McConnachie A, McMurray JJ V, Meyer B, Orchard V, Shaukat A, Watkins S, Welsh P, Sattar N, Berry C, Docherty KF. Empagliflozinto prevent progressive adverse remodelling after myocardial infarction(EMPRESS-MI): rationale and design. ESC Heart Fail. 2024;11(5):2001–12; DOI:10.1002/ehf2.14830.
- Marfella R, Scisciola L, D’Onofrio N, Maiello C, Trotta MC, Sardu C, Panarese I, Ferraraccio F, Capuano A, Barbieri M, Balestrieri ML, Napoli C, Paolisso G. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol Res. 2022;184(12):106448; DOI:10.1016/j.phrs.2022.106448.
- Palmiero G, Cesaro A, Vetrano E, Pafundi PC, Galiero R, Caturano A, Moscarella E, Gragnano F, Salvatore T, Rinaldi L, Calabrò P, Sasso FC. Impact of SGLT2 inhibitors on heart failure: from pathophysiology to clinical effects. Int J Mol Sci. 2021;22(11):15863; DOI:10.3390/ijms22115863.
- Pabel S, Hamdani N, Luedde M, Sossalla S. SGLT2 inhibitors and their mode of action in heart failure – has the mystery been unravelled? Curr Heart Fail Rep. 2021;18(5):315–28; DOI:10.1007/s11897-021-00529-8.
- Berger JH, Matsuura TR, BowmanCE, Taing R, Patel J, Lai L, Leone TC, Reagan JD, Haldar SM, Arany Z, Kelly DP. SGLT2 Inhibitors act independently of SGLT2 to confer benefit for HFrEF inmice. Circ Res. 2024;135(5):632–4; DOI:10.1161/CIRCRESAHA.124.324823.
- Chen S, Wang Q, Christodoulou A, Mylonas N, Bakker D, Nederlof R, HollmannMW, Weber NC, Coronel R, Wakker V, Christoffels VM, Andreadou I, Zuurbier CJ. Sodium glucose cotransporter-2 inhibitor empagliflozin reduces infarct size independently of sodium glucose cotransporter-2. Circulation. 2023;147(2):276–9; DOI:10.1161/CIRCULATIONAHA.122.061688.
- Kang S, Verma S, Hassanabad AF, Teng G, Belke DD, Dundas JA, Guzzardi DG, Svystonyuk DA, Pattar SS, Park DSJ, Turnbull JD, Duff HJ, Tibbles LA, CunningtonRH, Dyck JRB, Fedak PWM. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explainEMPA-REG OUTCOME results. CanJ Cardiol. 2020;36(5):543–53; DOI:10.1016/j. cjca.2019.08.033.
- Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, StienenGJM, Coronel R, Zuurbier CJ. Empagliflozindecreases myocardial cytoplasmic Na+ through inhibitionof the cardiac Na+/H+ exchanger inrats and rabbits. Diabetologia. 2017;60(3):568–73; DOI:10.1007/s00125-016-4134-x.
- Liu H, Jiang B, Hua R, Liu X, Qiao B, Zhang X, Liu X, Wang W, YuanQ, Wang B, Wei S, ChenY. ALDH2 mediates the effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on improving cardiac remodeling. Cardiovasc Diabetol. 2024;23(1):380; DOI:10.1186/s12933-024-02477-8.
- Minciună I-A, Tomoaia R, Mihăilă D, Cismaru G, Puiu M, Roșu R, Simu G, Frîngu F, Irimie DA, CaloianB, Zdrenghea D, Pop D. Recent advances inunderstanding the molecular mechanisms of SGLT2 inhibitors in atrial remodeling. Curr Issues Mol Biol. 2024;46(8):9607–23; DOI:10.3390/cimb46090571.
- Zhang Y, LinX, Chu Y, ChenX, Du H, Zhang H, Xu C, Xie H, RuanQ, LinJ, Liu J, Zeng J, Ma K, Chai D. Dapagliflozin: a sodium–glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling. Cardiovasc Diabetol. 2021;20:(1)121; DOI:10.1186/s12933-021-01312-8.
- González A, Ravassa S, López B, Moreno MU, Beaumont J, José GS, Querejeta R, Bayés-Genís A, Díez J. Myocardial remodeling inhypertension. Hypertension. 2018;72(3):549–58; DOI:10.1161/HYPERTENSIONAHA.118.11125.
- Yang J, Li L, Zheng X, Lu Z, Zhou H. Dapagliflozinattenuates myocardial hypertrophy via activating the SIRT1/HIF-1α signaling pathway. Biomed Pharmacother. 2023;165(1):115125; DOI:10.1016/j. biopha.2023.115125.
- Lee H-C, Shiou Y-L, Jhuo S-J, Chang C-Y, Liu P-L, Jhuang W-J, Dai Z-K, ChenW-Y, ChenY-F, Lee A-S. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019;18(1):45; DOI:10.1186/s12933-019-0849-6.
- Zhang X, Wang N, Fu P, AnY, SunF, Wang C, HanX, Zhang Y, Yu X, Liu Y. Dapagliflozin attenuates heart failure with preserved ejection fraction remodeling and dysfunctionby elevating β-hydroxybutyrate–activated Citrate Synthase. J Cardiovasc Pharmacol. 2023;82(5):375-388; DOI:10.1097/fjc.0000000000001474.
- MoellmannJ, MannPA, Kappel BA, Kahles F, Klinkhammer BM, Boor P, KramannR, Ghesquiere B, Lebherz C, Marx N, Lehrke M. The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. Diabetes Obes Metab. 2022;24(10):2263–72; DOI:10.1111/dom.14814.
- Savage P, WatsonC, CoburnJ, Cox B, Shahmohammadi M, Grieve D, DixonL. Impact of SGLT2 inhibitiononmarkers of reverse cardiac remodelling inheart failure: Systematic review and meta-analysis. ESC Heart Fail. 2024;11(11):3636–48; DOI:10.1002/ehf2.14993.
- UsmanMS, Januzzi JL, Anker SD, SalmanA, Parikh PB, Adamo M, Filippatos G, Khan MS, Lala A, Verma S, Metra M, Butler J. The effect of sodium–glucose cotransporter 2 inhibitors on left cardiac remodelling in heart failure with reduced ejection fraction: Systematic review and meta-analysis. Eur J Heart Fail. 2024;26(3):373–82; DOI:10.1002/ejhf.3129.
- Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, HussainA, Haque S, Reshi MS. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;11(3):552–67; DOI:10.3390/CELLS11030552.
- Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact. 2025;413(1):111489; DOI:10.1016/j. cbi.2025.111489.
- Kaludercic N, Giorgio V. The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The role of ATP synthase. Oxid Med Cell Longev. 2016;2016(1):3869610; DOI:10.1155/2016/3869610.
- Bertozzi G, Ferrara M, Di Fazio A, Maiese A, Delogu G, Di Fazio N, Tortorella V, La Russa R, Fineschi V. Oxidative stress in sepsis: a focus on cardiac pathology. Int J Mol Sci. 2024;25(5):2912–25; DOI:10.3390/IJMS25052912.
- Slezák J, Ravingerová T, Kura B. New possibilities of the preventionand treatment of cardiovascular pathologies. The potential of molecular hydrogen in the reduction of oxidative stress and its consequences. Physiol Res. 2024;73(S3):S671–84; DOI:10.33549/PHYSIOLRES.935491.
- Buenfil-Chi TJ, Mercado-Uribe H, Sierra-Valdez FJ. ROS-specific neutralization of bioactive compounds: an optical approach. ACS Omega. 2025;10(31):26857–70; DOI:10.1021/ACSOMEGA.5C01738.
- Bodnar P, Mazurkiewicz M, Chwalba T, Romuk E, Ciszek-Chwalba A, Jacheć W, Wojciechowska C. The impact of pharmacotherapy for heart failure on oxidative stress – role of new drugs, flozins. Biomedicines. 2023;11(8):2236–50; DOI:10.3390/BIOMEDICINES11082236.
- Amara M, Stoler O, Birati EY. The role of inflammationinthe pathophysiology of heart failure. Cells. 2025;14(11):1117–30; DOI:10.3390/CELLS14141117.
- Xiang M, Lu Y, XinL, Gao J, Shang C, Jiang Z, LinH, Fang X, Qu Y, Wang Y, ShenZ, Zhao M, Cui X. Role of oxidative stress inreperfusionfollowing myocardial ischemia and its treatments. Oxid Med Cell Longev. 2021;2021(1):6614009; DOI:10.1155/2021/6614009.
- Nymo SH, Hulthe J, Ueland T, McMurray J, Wikstrand J, Askevold ET, Yndestad A, Gullestad L, Aukrust P. Inflammatory cytokines inchronic heart failure: Interleukin-8 is associated with adverse outcome. Results from CORONA. Eur J Heart Fail. 2014;16(1):68–75; DOI:10.1093/EURJHF/HFT125.
- Luna-Marco C, Iannantuoni F, Hermo-Argibay A, Devos D, Salazar JD, Víctor VM, Rovira-Llopis S. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radic Biol Med. 2024;213(1):19–35; DOI: 10.1016/J.FREERADBIOMED.2024.01.015.
- Schönberger E, Mihaljević V, Steiner K, Šarić S, Kurevija T, Majnarić LT, Bilić Ćurčić I, Canecki-Varžić S. Immunomodulatory effects of SGLT2 inhibitors – targeting inflammation and oxidative stress in aging. Int J EnvironRes Public Health. 2023;20(17):6671–88; DOI:10.3390/IJERPH20176671.
- Pang Y, Huang M, Lu J, Peng Z, Tang M, Huang P, Zhai Y, Lu J. Global trends in research on oxidative stress related to heart failure from 2012 to 2021: a bibliometric analysis and suggestion to researchers. Ann Transl Med. 2023;11(2):54; DOI:10.21037/ATM-22-6573.
- Tsai KF, ChenYL, Chiou TTY, Chu TH, Li LC, Ng HY, Lee WC, Lee C Te. Emergence of sglt2 inhibitors as powerful antioxidants inhumandiseases. Antioxidants. 2021;10(8):1166; DOI:10.3390/antiox10081166.
- Yang CC, ChenKH, Yue Y, Cheng BC, Hsu TW, Chiang JY, ChenCH, Liu F, Xiao J, Yip HK. SGLT2 inhibitor downregulated oxidative stress via activating AMPK pathway for cardiorenal (CR) protection in CR syndrome rodent fed with high protein diet. J Mol Histol. 2024;55(5):803–23; DOI:10.1007/S10735-024-10233-1.
- La Grotta R, Frigé C, Matacchione G, Olivieri F, de Candia P, Ceriello A, Prattichizzo F. Repurposing SGLT-2 inhibitors to target aging: available evidence and molecular mechanisms. Int J Mol Sci. 2022;23(20):12325; DOI:10.3390/IJMS232012325.
- Uthman L, Li X, Baartscheer A, Schumacher CA, Baumgart P, Hermanides J, Preckel B, HollmannMW, Coronel R, Zuurbier CJ, Weber NC. Empagliflozinreduces oxidative stress through inhibitionof the novel inflammation/NHE/[Na+]c/ROS-pathway inhumanendothelial cells. Biomed Pharmacothe. 2022;146(1):112515; DOI:10.1016/j. biopha.2021.112515.
- Hsieh PL, Chu PM, Cheng HC, Huang YT, Chou WC, Tsai KL, ChanSH. Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation. Int J Mol Sci. 2022;23(17):10146; DOI:10.3390/IJMS231710146.
- Cheng X, Liu D, Xing R, Song H, TianX, YanC, HanY. Orosomucoid 1 Attenuates doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes via Nrf2 signaling. Biomed Res Int. 2020;2020(1):5923572; DOI:10.1155/2020/5923572.
- Akhigbe RE, Ajayi AF, Ram SK. Oxidative stress and cardiometabolic disorders. Biomed Res Int. 2021;2021(1):9872109; DOI:10.1155/2021/9872109.
- McMurray JJV, SolomonSD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang C-E, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Duká t A, Ge J, Howlett JG, Katova T, Kitakaze M, LjungmanCEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde A-M. Dapagliflozininpatients with heart failure and reduced ejectionfraction. N Engl J Med. 2019;381(21):1995–2008; DOI:10.1056/nejmoa1911303.
- Packer M. Lessons learned from the DAPA-HF trial concerning the mechanisms of benefit of SGLT2 inhibitors on heart failure events in the context of other large-scale trials nearing completion. Cardiovasc Diabetol. 2019;18(1):129; DOI:10.1186/s12933-019-0938-6.
- Zeng Q, Zhou Q, Liu W, Wang Y, Xu X, Xu D. Mechanisms and perspectives of sodium-glucose co-transporter 2 inhibitors in heart failure. Front Cardiovasc Med. 2021;8(1):636152; DOI:10.3389/fcvm.2021.636152.
- Pabel S, Hamdani N, Singh J, Sossalla S. Potential mechanisms of SGLT2 inhibitors for the treatment of heart failure with preserved ejection fraction. Front Physiol. 2021;12(1):752370; DOI:10.3389/fphys.2021.752370.
- Carvalho PEP, Veiga TMA, Simões e Silva AC, Gewehr DM, DagostinCS, Fernandes A, Nasi G, Cardoso R. Cardiovascular and renal effects of SGLT2 inhibitor initiation in acute heart failure: a meta-analysis of randomized controlled trials. Clin Res Cardiol. 2023;112(5):1044–55; DOI:10.1007/s00392-022-02148-2.
- Nassif ME, Windsor SL, Borlaug BA, KitzmanDW, Shah SJ, Tang F, KharitonY, Malik AO, Khumri T, Umpierrez G, Lamba S, Sharma K, KhanSS, Chandra L, Gordon RA, Ryan JJ, Chaudhry SP, Joseph SM, Chow CH, Kanwar MK, Pursley M, Siraj ES, Lewis GD, ClemsonBS, Fong M, Kosiborod MN. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(12):1954–60; DOI:10.1038/s41591-021-01536-x.
- Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q, Tunnicliffe D, Ruospo M, Natale P, Saglimbene V, Nicolucci A, JohnsonDW, Tonelli M, Rossi MC, Badve S V., Cho Y, Nadeau-Fredette AC, Burke M, Faruque LI, Lloyd A, Ahmad N, Liu Y, Tiv S, Millard T, Gagliardi L, Kolanu N, Barmanray RD, McMorrow R, Raygoza Cortez AK, White H, ChenX, Zhou X, Liu J, Rodríguez AF, González-Colmenero AD, Wang Y, Li L, Sutanto S, Solis RC, Díaz González-Colmenero F, Rodriguez-Gutierrez R, Walsh M, Guyatt G, Strippoli GFM. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: Systematic review and network meta-analysis of randomised controlled trials. The BMJ. 2021;372(4):m4573; DOI:10.1136/bmj. m4573.
- Zhang N, Feng B, Ma X, SunK, Xu G, Zhou Y. Dapagliflozinimproves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18(1):107; DOI:10.1186/s12933-019-0914-1.
- Peters AE, NguyenM, GreenJB, PearsonER, Buse JB, Sourij H, Hernandez AF, Sattar N, Holman RR, Mentz RJ, Shah SH. Proteomic pathways across the ejection fraction spectrum in patients with heart failure and diabetes mellitus: anEXSCEL trial substudy. Sci Rep. 2025;15(1):30170; DOI:10.1038/s41598-025-14414-0.
- MartinTP, MacDonald EA, Elbassioni AAM, O’Toole D, Zaeri AAI, NicklinSA, Gray GA, Loughrey CM. Preclinical models of myocardial infarction: from mechanism to translation. Br J Pharmacol. 2022;179(5):770–91; DOI:10.1111/bph.15595.
- González A, López B, Ravassa S, SanJosé G, Latasa I, Butler J, Díez J. Myocardial interstitial fibrosis in hypertensive heart disease: from mechanisms to clinical management. Hypertension. 2024;81(2):218–28; DOI:10.1161/HYPERTENSIONAHA.123.21708.
- Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632–44; DOI:10.1016/j. jacbts.2020.02.004.
- Rashed Ameer. The 2023 ESC heart failure guideline update and its implications for clinical practice. Br J Cardiol. 2024;31(4):121–60; DOI:10.5837/bjc.2024.023.
- Wagdy K, Nagy S. Emperor-preserved: Sglt2 inhibitors breakthrough in the management of heart failure with preserved ejection fraction. Glob Cardiol Sci Pract. 2021;2021(1):17; DOI:10.21542/gcsp.2021.17.
- Mentz RJ, Brunton SA, Rangaswami J. Sodium-glucose cotransporter-2 inhibition for heart failure with preserved ejection fraction and chronic kidney disease with or without type 2 diabetes mellitus: a arrative review. Cardiovasc Diabetol. 2023;22(1):316; DOI:10.1186/s12933-023-02023-y.