Have a personal or library account? Click to login
The negative effect on human health due to disruption of circadian rhythm in modern times Cover

The negative effect on human health due to disruption of circadian rhythm in modern times

Open Access
|Jul 2024

References

  1. O’Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol. 2013;(217):67-103; DOI:10.1007/978-3-642-25950-0_4.
  2. Chaput JP, Dutil C. Lack of sleep as a contributor to obesity in adolescents: impacts on eating and activity behaviors. Int J Behav Nutr Phys Act. 2016;13(1):103; DOI:10.1186/s12966-016-0428-0.
  3. Lusardi P, Zoppi A, Preti P, Pesce RM, Piazza E, Fogari R. Effects of insufficient sleep on blood pressure in hypertensive patients: a 24-h study. Am J Hypertens. 1999;12(1 Pt 1):63-8; DOI:10.1016/s0895-7061(98)00200-3.
  4. Walker WH 2nd, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry. 2020;10(1):28; DOI:10.1038/s41398-020-0694-0.
  5. Choy M, Salbu RL. Jet lag: current and potential therapies. P T. 2011;36(4):221-31.
  6. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci USA. 2015;112(4):1232-7; DOI:10.1073/pnas.1418490112.
  7. Arendt J, Aulinas A. Physiology of the pineal gland and melatonin. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Enndotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-2024 [cited 2024 Feb 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK550972/.
  8. Ribeiro JA, Sebastião AM. Caffeine and adenosine. J Alzheimers Dis. 2010;20 Suppl 1:S3-15; DOI:10.3233/JAD-2010-1379. PMID: 20164566.
  9. Ma MA, Morrison EH. Neuroanatomy, nucleus suprachiasmatic [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2024 Feb 08]. 13 p. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546664/.
  10. Kriegsfeld LJ, Korets R, Silver R. Expression of the circadian clock gene Period 1 in neuroendocrine cells: an investigation using mice with a Per1::GFP transgene. Eur J Neurosci. 2003;17(2):212-20; DOI:10.1046/j.1460-9568.2003.02431.x.
  11. Moore RY, Speh JC, Leak RK. Suprachiasmatic nucleus organization. Cell Tissue Res. 2002 Jul;309(1):89-98. doi: 10.1007/s00441-002-0575-2.
  12. Emerson CH. Pineal gland [Internet]. Chicago: Encyclopedia Britannica, Inc.; 2024 [cited: 2024 Mar 15]. Available from: https://www.britanni4ca.com/science/pineal-gland/.
  13. Ibañez Rodriguez MP, Noctor SC, Muñoz EM. Cellular basis of pineal gland development: emerging role of microglia as phenotype regulator. PLoS One. 2016;11(11):e0167063; DOI:10.1371/journal.pone.0167063.
  14. Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: nature’s most versatile biological signal? FEBS J. 2006;273(13):2813-38; DOI:10.1111/j.1742-4658.2006.05322.x.
  15. Editors of Encyclopedia Britannica. Melatonin [Internet]. Chicago: Encyclopedia Britannica, Inc.; 2024 [cited: 2024 Mar 15]. Available from: https://www.britannica.com/science/melatonin/.
  16. Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge L, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells. 2019;8(7):681; DOI:10.3390/cells8070681.
  17. Oishi A, Gbahou F, Jockers R. Melatonin receptors, brain functions, and therapies. Handb Clin Neurol. 2021;179:345-56; DOI:10.1016/B978-0-12-819975-6.00022-4.
  18. Stiles GL. Adenosine receptors and beyond: molecular mechanisms of physiological regulation. Clin Res. 1990;38(1):10-8.
  19. Ramkumar V, Pierson G, Stiles GL. Adenosine receptors: clinical implications and biochemical mechanisms. Prog Drug Res. 1988;32:195-247; DOI:10.1007/978-3-0348-9154-7_7.
  20. Lazarus M, Oishi Y, Bjorness TE, Greene RW. Gating and the need for sleep: dissociable effects of adenosine A1 and A2A receptors. Front Neusrosci. 2019;13:740; DOI:10.3389/fnins.2019.00740.
  21. Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne). 2013;4:18; DOI:10.3389/fendo.2013.00018.
  22. Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A, Chieffi S, Cibelli G, Monda M, Messina G. Basal forebrain cholinergic system and orexin neurons: effects on attention. Front Behav Neurosci. 2017;11:10; DOI:10.3389/fnbeh.2017.00010.
  23. Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R. Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: an opto-dialysis study. J Neurosci. 2016;36(6):2057-67; DOI:10.1523/JNEUROSCI.3318-15.2016.
  24. Prin M, Bertazzo J, Walker LA, Scott B, Eckle T. Enhancing circadian rhythms-the circadian MEGA bundle as novel approach to treat critical illness. Ann Transl Med. 2023;11(9):319; DOI:10.21037/atm-22-5127.
  25. Xie Y, Tang Q, Chen G, Xie M, Yu S, Zhao J, Chen L. New insights into the circadian rhythm and its related diseases. Front Physiol. 2019;10:682; DOI:10.3389/fphys.2019.00682.
  26. Lévi FA, Zidani R, Vannetzel JM, Perpoint B, Focan C, Faggiuolo R, Chollet P, Garufi C, Itzhaki M, Dogliotti L, lacobelli S, Adam R, Kunstlinger F, Gastiaburu J, Bismuth H, Jasmin C, Misset JL. Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial. J Natl Cancer Inst. 1994;86(21):1608-17; DOI:10.1093/jnci/86.21.1608.
  27. Nováková M, Sládek M, Sumová A. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J Biol Rhythms. 2010;25(5):350-60; DOI:10.1177/0748730410377967.
  28. Vilches N, Spichiger C, Mendez N, Abarzua-Catalan L, Galdames HA, Hazlerigg DG, Richter HG, Torres-Farfan C. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS One. 2014;9(3):e91313; DOI:10.1371/journal.pone.0091313.
  29. Voiculescu SE, Le Duc D, Roșca AE, Zeca V, Chiţimuș DM, Arsene AL, Drăgoi CM, Nicolae AC, Zăgrean L, Schöneberg T, Zăgrean AM. Behavioral and molecular effects of prenatal continuous light exposure in the adult rat. Brain Res. 2016;1650:51-9; DOI:10.1016/j.brainres.2016.08.031.
  30. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20(1):49-65; DOI:10.1038/s41583-018-0088-y.
  31. Fishbein AB, Knutson KL, Zee PC. Circadian disruption and human health. J Clin Invest. 2021;131(19):e148286; DOI:10.1172/JCI148286.
Language: English
Page range: 21 - 25
Submitted on: Mar 18, 2024
Accepted on: Apr 2, 2024
Published on: Jul 5, 2024
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Hevind Sharo, Yannick Amann, Slawomir Wozniak, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.