References
- Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N. Ovarian folliculogenesis. Results Probl Cell Differ. 2016;58:167–90; DOI:10.1007/978-3-319-31973-5_7.
- Yang DZ, Yang W, Li Y, He Z. Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction. J Assist Reprod Genet. 2013;30:213–19; DOI:10.1007/s10815-013-9944-x.
- Franks S, Hardy K. Androgen action in the ovary. Front Endocrinol (Lausanne). 2018;9:452; DOI:10.3389/fendo.2018.00452.
- Stamatiades GA, Carroll RS, Kaiser UB. GnRH - A Key Regulator of FSH. Endocrinology. 2019;160:57–67; DOI:10.1210/en.2018-00889.
- Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism. 2018;86:3–17; DOI:10.1016/j.metabol.2017.11.018.
- Miller WL, Shafiee-Kermani F, Strahl BD, Huang HJ. The nature of FSH induction by GnRH. Trends Endocrinol Metab. 2002;13:257–63; DOI:10.1016/S1043-2760(02)00614-8.
- Barbieri RL, McShane PM, Ryan KJ. Constituents of cigarette smoke inhibit human granulosa cell aromatase. Fertil Steril. 1986;46:232–6; DOI:10.1016/s0015-0282(16)49517-8.
- Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han Y Bin, Teng XM, Yang JZ. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 2015;150:289–96; DOI:10.1530/REP-15-0044.
- Byskov AG, Yding Andersen C, Hossaini A, Guoliang X. Cumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSH. Mol Reprod Dev. 1997;46:296–305; DOI:10.1002/(SICI)1098-2795(199703)46:3<296::AID-MRD8>3.0.CO;2-K.
- Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: Follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16; DOI:10.1016/j.fertnstert.2014.11.015.
- Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123:613–20; DOI:10.1530/rep.0.1230613.
- Feng G, Shi D, Yang S, Wang X. Co-culture embedded in cumulus clumps promotes maturation of denuded oocytes and reconstructs gap junctions between oocytes and cumulus cells. Zygote. 2013;21:231–7; DOI:10.1017/S0967199412000305.
- Zhou CJ, Wu SN, Shen JP, Wang DH, Kong XW, Lu A, Li YJ, Zhou HX, Zhao YF, Liang CG. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice. PeerJ. 2016;4:e1761; DOI:10.7717/peerj.1761.
- Santiquet NW, Develle Y, Laroche A, Robert C, Richard FJ. Regulation of gap-junctional communication between cumulus cells during in vitro: Maturation in swine, a gap-FRAP study. Biol Reprod. 2012;87:46; DOI:10.1095/biolreprod.112.099754.
- Chermuła B, Kranc W, Jopek K, Budna-Tukan J, Hutchings G, Dompe C, Moncrieff L, Janowicz K, Józkowiak M, Jeseta M, Petitte J, Mozdziak P, Pawelczyk L, Spaczyński RZ, Kempisty B. Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers. Cells. 2020;9:1265; DOI:10.3390/cells9051265.
- Hickman CFL, Campbell A, Fishel S. Optimising the timing between oocyte collection, cumulus removal and insemination by ICSI or IVF. Fertil Steril. 2011;96; DOI:10.1016/j.fertnstert.2011.07.305.
- Kong QQ, Wang J, Xiao B, Lin FH, Zhu J, Sun GY, Luo MJ, Tan JH. Cumulus cell-released tumor necrosis factor (TNF)-a promotes post-ovulatory aging of mouse oocytes. Aging (Albany NY). 2018;10:1745–57; DOI:10.18632/aging.101507.
- Zhu J, Zhang J, Li H, Wang TY, Zhang CX, Luo MJ, Tan JH. Cumulus cells accelerate oocyte aging by releasing soluble Fas Ligand in mice. Sci Rep. 2015;5:8683; DOI:10.1038/srep08683.
- Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Assist Reprod Genet. 2001;18:490–8; DOI:10.1023/A:1016649026353.
- Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257–68; DOI:10.1242/jcs.02644.
- Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22:9030–40; DOI:10.1038/sj.onc.1207116.
- Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stan-bridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21; DOI:10.1126/science.282.5392.1318.
- McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, Chin HS, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, Van Delft MF, Kile BT. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359:eaao6047; DOI:10.1126/science.aao6047.
- Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87; DOI:10.1186/1756-9966-30-87.
- Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389;300–5; DOI:10.1038/38525.
- Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–113; DOI:10.1038/cdd.2017.169.
- Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.
- Pflaum J, Schlosser S, Müller M. P53 family and cellular stress responses in cancer. Front Oncol. 2014;4:285; DOI:10.3389/fonc.2014.00285.
- Reich NC, Levine AJ. Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature. 1984;308:199–201; DOI:10.1038/308199a0.
- Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9; DOI:10.1038/387296a0.
- Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34; DOI:10.1016/S0092-8674(00)80416-X.
- Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta - Mol Cell Res. 2011;1813:521–31; DOI:10.1016/j.bbamcr.2010.12.019.
- Leon PMM, Campos VF, Kaefer C, Begnini KR, Mcbride AJA, Dellagostin OA, Seixas FK, Deschamps JC, Collares T. Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells. Zygote. 2013;21:279–85; DOI:10.1017/S0967199411000554.
- Filali M, Frydman N, Belot MP, Hesters L, Gaudin F, Tachdjian G, Emilie D, Frydman R, Machelon V. Oocyte in-vitro maturation: BCL2 mRNA content in cumulus cells reflects oocyte competency. Reprod Biomed Online. 2009;19 Suppl 4:4309; DOI:10.1016/s1472-6483(10)61071-1.
- Haraguchi H, Hirota Y, Saito-Fujita T, Tanaka T, Shimizu-Hirota R, Harada M, Akaeda S, Hiraoka T, Matsuo M, Matsumoto L, Hirata T, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. Mdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte quality. FASEB J. 2019;33:2610–20; DOI:10.1096/fj.201801401R.
- Scaruffi P, Stigliani S, Cardinali B, Massarotti C, Lambertini M, Sozzi F, Dellepiane C, Merlo DF, Anserini P, Del Mastro L. Gonadotropin releasing hormone agonists have an anti-apoptotic effect on cumulus cells. Int J Mol Sci. 2019;20:6045; DOI:10.3390/ijms20236045.
- Arias-Álvarez M, Garciá-Garciá RM, López-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL. α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes. Reprod Fertil Dev. 2018;30:1728–38; DOI:10.1071/RD17525.