Have a personal or library account? Click to login
Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells Cover

Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells

Open Access
|Dec 2019

References

  1. Błocińska R. Folikulogeneza i steroidogeneza jajnikowa u świń. Zesz Nauk Tow Doktorantów Uniw Jagiellońskiego. 2010.
  2. MATSUDA F, INOUE N, MANABE N, OHKURA S. Follicular Growth and Atresia in Mammalian Ovaries: Regulation by Survival and Death of Granulosa Cells. J Reprod Dev. 2012;58:44–50; DOI:10.1262/jrd.2011-012.2245028410.1262/jrd.2011-012
  3. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996; DOI:10.1210/er.17.2.121.8706629
  4. Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99:979–97; DOI:10.1016/j.fertnstert.2013.01.129.10.1016/j.fertnstert.2013.01.12923498999
  5. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77; DOI:10.1093/humupd/dmm040.10.1093/humupd/dmm04018175787
  6. Hamel M, Dufort I, Robert C, Leveille M-C, Leader A, Sirard M-A. Genomic assessment of follicular marker genes as pregnancy predictors for human IVF. Mol Hum Reprod. 2010;16:87–96; DOI:10.1093/molehr/gap079.1977894910.1093/molehr/gap079
  7. Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27:210–9; DOI:10.1634/stemcells.2008-0233.10.1634/stemcells.2008-023319224509
  8. Mattioli M, Gloria A, Turriani M, Berardinelli P, Russo V, Nardinocchi D, Curini V, Baratta M, Martignani E, Barboni B. Osteo-regenerative potential of ovarian granulosa cells: An in vitro and in vivo study. Theriogenology. 2012;77:1425–37; DOI:10.1016/j.theriogenology.2011.11.008.10.1016/j.theriogenology.2011.11.008
  9. Doğan A. Embryonic Stem Cells in Development and Regenerative Medicine, Springer, Cham; 2018;1–15; DOI:10.1007/5584_2018_175.
  10. Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30:1255–61; DOI:10.1007/s10815-013-0068-0.2389326610.1007/s10815-013-0068-0
  11. Raff MC. Surface antigenic markers for distinguishing T and B lymphocytes in mice. Transplant Rev. 1971;6:52–80; DOI:10.1111/j.1600-065x.1971.tb00459.x.
  12. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F., Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7; DOI:10.1080/14653240600855905.1692360610.1080/14653240600855905
  13. Dzafic E, Stimpfel M, Novakovic S, Cerkovnik P, Virant-Klun I. Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. Biomed Res Int. 2014;2014:508216; DOI:10.1155/2014/508216.24724084
  14. Bukovský A, Caudle MR, Keenan JA, Wimalasena J, Foster JS, Van Meter SE. Quantitative Evaluation of the Cell Cycle-Related Retinoblastoma Protein and Localization of Thy-1 Differentiation Protein and Macrophages during Follicular Development and Atresia, and in Human Corpora Lutea1. Biol Reprod. 1995;52:776–92; DOI:10.1095/biolreprod52.4.776.778000010.1095/biolreprod52.4.776
  15. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978;253:2769–76.632300
  16. Mathews LS, Norstedt G, Palmiter RD. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc Natl Acad Sci. 1986;83:9343–7; DOI:10.1073/pnas.83.24.9343.10.1073/pnas.83.24.9343
  17. Rotwein P. Two insulin-like growth factor I messenger RNAs are expressed in human liver. Proc Natl Acad Sci U S A. 1986;83:77–81; DOI:10.1073/pnas.83.1.77.345576010.1073/pnas.83.1.77
  18. Oliver Je, Aitman Tj, Powell Jf, Wilson Ca, Clayton Rn. Insulin-Like Growth Factor I Gene Expression in the Rat Ovary is Confined to the Granulosa Cells of Developing Follicles. Endocrinology. 1989;124:2671–9; DOI:10.1210/endo-124-6-2671.272144110.1210/endo-124-6-2671
  19. Adashi EY, Resnick CE, Payne DW, Rosenfeld RG, Matsumoto T, Hunter MK, Gargosky SE, Zhou J, Bondy CA. The Mouse Intraovarian Insulin-Like Growth Factor I System: Departures from the Rat Paradigm*. Endocrinology. 1997;138:3881–90; DOI:10.1210/endo.138.9.5363.10.1210/endo.138.9.53639275078
  20. Zhou J, Refuerzo J, Bondy C. Granulosa cell DNA synthesis is strictly correlated with the presence of insulin-like growth factor I and absence of c-fos/c-jun expression. Mol Endocrinol. 1995;9:924–31; DOI:10.1210/mend.9.7.7476974.7476974
  21. Kadakia R, Arraztoa JA, Bondy C, Zhou J. Granulosa cell proliferation is impaired in the Igf1 null ovary. Growth Horm IGF Res. 2001;11:220–4; DOI:10.1054/ghir.2001.0201.10.1054/ghir.2001.020111735237
  22. Ogo Y, Taniuchi S, Ojima F, Hayashi S, Murakami I, Saito Y, Takeuchi S, Kudo T, Takahashi S. IGF-1 gene expression is differentially regulated by estrogen receptors α and β in mouse endometrial stromal cells and ovarian granulosa cells. J Reprod Dev. 2014;60:216–23; DOI:10.1262/jrd.2013-085.2467077810.1262/jrd.2013-085
  23. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61:1303–13; DOI:10.1016/0092-8674(90)90694-a.169472310.1016/0092-8674(90)90694-A
  24. Ohta N, Saito H, Kuzumaki T, Takahashi T, Ito MM, Saito T, Nakahara K, Hiroi M. Expression of CD44 in human cumulus and mural granulosa cells of individual patients in in-vitro fertilization programmes. Mol Hum Reprod. 1999;5:22–8; DOI:10.1093/molehr/5.1.22.1005065810.1093/molehr/5.1.22
  25. Kaneko T, Saito H, Toya M, Satio T, Nakahara K, Hiroi M. Hyaluronic acid inhibits apoptosis in granulosa cells via CD44. J Assist Reprod Genet. 2000;17:162–7; DOI:10.1023/a:1009470206468.1091157710.1023/A:1009470206468
  26. Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-Ligand Interaction Between CD44 and Osteopontin (Eta-1). Science. 1996;271:509–12; DOI:10.1126/science.271.5248.509.856026610.1126/science.271.5248.509
  27. Tunjung WAS, Yokoo M, Hoshino Y, Miyake Y, Kadowaki A, Sato E. Effect of hyaluronan to inhibit caspase activation in porcine granulosa cells. Biochem Biophys Res Commun. 2009;382:160–4; DOI:10.1016/j.bbrc.2009.02.163.1926865310.1016/j.bbrc.2009.02.163
  28. Chavoshinejad R, Marei WFA, Hartshorne GM, Fouladi-Nashta AA. Localisation and endocrine control of hyaluronan synthase (HAS) 2, HAS3 and CD44 expression in sheep granulosa cells. Reprod Fertil Dev. 2016;28:765; DOI:10.1071/RD14294.10.1071/RD1429425427133
  29. Ríus C, Smith JD, Almendro N, Langa C, Botella LM, Marchuk DA, Vary CP, Bernabéu C. Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood. 1998;92:4677–90.984553410.1182/blood.V92.12.4677
  30. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP. Defective Angiogenesis in Mice Lacking Endoglin. Science. 1999;284:1534–7; DOI:10.1126/science.284.5419.1534.1034874210.1126/science.284.5419.1534
  31. Ai A, Tang Z, Liu Y, Yu S, Li B, Huang H, Wang X, Cao Y, Zhang W. Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp Ther Med. 2019;18:2167–77; DOI:10.3892/etm.2019.7802.31452708
  32. Basini G, Falasconi I, Bussolati S, Grolli S, Di Lecce R, Grasselli F. Swine Granulosa Cells Show Typical Endothelial Cell Characteristics. Reprod Sci. 2016; DOI:10.1177/1933719115612130.26494700
  33. Bamberger A-M, Jenatschke S, Schulte HM, Löning T, Bamberger CM. Leukemia Inhibitory Factor (LIF) Stimulates the Human HLA-G Promoter in JEG3 Choriocarcinoma Cells. J Clin Endocrinol Metab. 2000;85:3932–6; DOI:10.1210/jcem.85.10.6849.10.1210/jcem.85.10.684911061559
  34. Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–22; DOI:10.1038/nature08113.10.1038/nature0811319571885
  35. Kubota Y, Hirashima M, Kishi K, Stewart CL, Suda T. Leukemia inhibitory factor regulates microvessel density by modulating oxygen-dependent VEGF expression in mice. J Clin Invest. 2008;118:2393–403; DOI:10.1172/JCI34882.18521186
  36. Abir R, Fisch B, Jin S, Barnnet M, Freimann S, Van den Hurk R, Feldberg D, Nitke S, Krissi H, Ao A. Immunocytochemical detection and RT-PCR expression of leukaemia inhibitory factor and its receptor in human fetal and adult ovaries. Mol Hum Reprod. 2004;10:313–9; DOI:10.1093/molehr/gah047.1504460110.1093/molehr/gah047
  37. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol. 2002;188:65–73; DOI:10.1016/S0303-7207(01)00746-8.10.1016/S0303-7207(01)00746-811911947
Language: English
Page range: 183 - 188
Submitted on: Nov 4, 2019
Accepted on: Dec 15, 2019
Published on: Dec 21, 2019
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Katarzyna Stefańska, Rafał Sibiak, Greg Hutchings, Claudia Dompe, Lisa Moncrieff, Krzysztof Janowicz, Michal Jeseta, Bartosz Kempisty, Marie Machatkova, Paul Mozdziak, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.