References
- Avilés M, Gutiérrez-Adán A, Coy P. Oviductal secretions: will they be key factors for the future ARTs? MHR Basic Sci Reprod Med. 2010;16:896–906; DOI:10.1093/molehr/gaq056.10.1093/molehr/gaq056
- Zumoffen CM, Gil R, Caille AM, Morente C, Munuce MJ, Ghersevich SA. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction. Hum Reprod. 2013;28:1297–308; DOI:10.1093/humrep/det016.10.1093/humrep/det01623427237
- Nawrocki MJ, Celichowski P, Jankowski M, Kranc W, Bryja A, Borys-Wójcik S, Jeseta M, Antosik P, Bukowska D, Bruska M, Zabel M, Nowicki M, Kempisty B. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach. Med J Cell Biol. 2018;6:186–94; DOI:10.2478/acb-2018-0029.10.2478/acb-2018-0029
- Nawrocki MJ, Budna J, Celichowski P, Khozmi R, Bryja A, Kranc W, Borys S, Ciesiółka S, Knap S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Analysis of fructose and mannose – regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro. Adv Cell Biol. 2017;5:129–35; DOI:10.1515/acb-2017-0011.10.1515/acb-2017-0011
- Kranc W, Jankowski M, Budna J, Celichowski P, Khozmi R, Bryja A, Borys S, Dyszkiewicz-Konwińska M, Jeseta M, Magas M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach. Med J Cell Biol. 2018;6:18–26; DOI:10.2478/acb-2018-0004.10.2478/acb-2018-0004
- Kranc W, Brązert M, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Skowroński MT, Bruska M, Zabel M, Nowicki M, Kempisty B. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol Med Rep. 2019;19:1705–15; DOI:10.3892/mmr.2019.9837.
- Kulus M, Sujka-Kordowska P, Konwerska A, Celichowski P, Kranc W, Kulus J, Piotrowska-Kempisty H, Antosik P, Bukowska D, Iżycki D, Bruska M, Zabel M, Nowicki M, Kempisty B. New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture—Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles. Int J Mol Sci. 2019;20:3966; DOI:10.3390/ijms20163966.10.3390/ijms20163966
- Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.2440339
- Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-75; DOI:10.1093/nar/gkm415.1757667810.1093/nar/gkm415
- Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300
- von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–7; DOI:10.1093/nar/gki005.15608232
- Besenfelder U, Havlicek V, Brem G. Role of the Oviduct in Early Embryo Development. Reprod Domest Anim. 2012;47:156–63; DOI:10.1111/j.1439-0531.2012.02070.x.10.1111/j.1439-0531.2012.02070.x22827365
- Player MR, Torrence PF. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther. 1998;78:55–113; DOI:10.1016/s0163-7258(97)00167-8.10.1016/S0163-7258(97)00167-89623881
- Kakuta S, Shibata S, Iwakura Y. Genomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene Family. J Interf Cytokine Res. 2002;22:981–93; DOI:10.1089/10799900260286696.10.1089/10799900260286696
- Hartmann R, Olsen HS, Widder S, Jørgensen R, Justesen J. p59OASL, a 2’-5’ oligoadenylate synthetase like protein: A novel human gene related to the 2’-5’ oligoadenylate synthetase family. Nucleic Acids Res. 1998;26:4121–7; DOI:10.1093/nar/26.18.4121.10.1093/nar/26.18.41219722630
- Ishibashi M, Wakita T, Esumi M. 2’,5’-Oligoadenylate synthetase-like gene highly induced by hepatitis C virus infection in human liver is inhibitory to viral replication in vitro. Biochem Biophys Res Commun. 2010;392:397–402; DOI:10.1016/j.bbrc.2010.01.034.10.1016/j.bbrc.2010.01.03420074559
- Shibata S, Kakuta S, Hamada K, Sokawa Y, Iwakura Y. Cloning of a novel 2’,5’-oligoadenylate synthetase-like molecule, Oasl5 in mice. Gene. 2001;271:261–71; DOI:10.1016/s0378-1119(01)00508-x.10.1016/S0378-1119(01)00508-X11418248
- Evsikov A V, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006;20:2713–27; DOI:10.1101/gad.1471006.10.1101/gad.147100617015433
- Yan W, Ma L, Stein P, Pangas SA, Burns KH, Bai Y, Schultz RM, Matzuk MM. Mice Deficient in Oocyte-Specific Oligoadenylate Synthetase-Like Protein OAS1D Display Reduced Fertility. Mol Cell Biol. 2005;25:4615–24; DOI:10.1128/MCB.25.11.4615-4624.2005.1589986410.1128/MCB.25.11.4615-4624.2005
- Talukder AK, Rashid MB, Yousef MS, Kusama K, Shimizu T, Shimada M, Suarez SS, Imakawa K, Miyamoto A. Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci Rep. 2018;8:7850; DOI:10.1038/s41598-018-26224-8.2977720510.1038/s41598-018-26224-8
- Warfel NA, Kraft AS. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 2015;151:41–9; DOI:10.1016/j.pharmthera.2015.03.001.10.1016/j.pharmthera.2015.03.00125749412
- Magnuson NS, Wang Z, Ding G, Reeves R. Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 2010;6:1461–78; DOI:10.2217/fon.10.106.10.2217/fon.10.10620919829
- Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76; DOI:10.2217/fon.13.229.2479906610.2217/fon.13.229
- Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Ferrer I, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget. 2017;8:58872–86; DOI:10.18632/oncotarget.19438.28938604
- Wu Y, Deng Y, Zhu J, Duan Y, Weng WW, Wu X. Pim1 promotes cell proliferation and regulates glycolysis via interaction with MYC in ovarian cancer. Onco Targets Ther. 2018;11:6647–56; DOI:10.2147/OTT.S180520.3034929810.2147/OTT.S180520
- Hinz B. Myofibroblasts. Exp Eye Res. 2015;142:56–70; DOI:10.1016/j.exer.2015.07.009.
- Ge J, Burnier L, Adamopoulou M, Kwa MQ, Schaks M, Rottner K, Brake-busch C. RhoA, Rac1, and Cdc42 differentially regulate SMA and collagen i expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358–69; DOI:10.1074/jbc.RA117.001113.10.1074/jbc.RA117.001113
- Endsley MP, Moyle-Heyrman G, Karthikeyan S, Lantvit DD, Davis DA, Wei JJ, Burdette JE. Spontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumors. Front Oncol. 2015;5; DOI:10.3389/fonc.2015.00154.
- Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denèfle P, Assmann G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5; DOI:10.1038/11921.10.1038/1192110431238
- Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ. A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry. 2000;39:14113–20; DOI:10.1021/bi0004192.10.1021/bi000419211087359
- Vaughan AM, Oram JF. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res. 2006;47:2433–43; DOI:10.1194/jlr.M600218-JLR200.10.1194/jlr.M600218-JLR20016902247
- Locatelli Y, Forde N, Blum H, Graf A, Piégu B, Mermillod P, Wolf E, Loner-gan P, Saint-Dizier M. Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. BMC Genomics. 2019;20; DOI:10.1186/s12864-019-5616-2.30898106
- Chou J-L, Huang R-L, Shay J, Chen L-Y, Lin S-J, Yan PS, Chao W-T, Lai Y-H, Lai Y-L, Chao T-K, Lee C-I, Tai C-K, Wu S-F, Nephew KP, Huang TH-M, Lai H-C, Chan MWY. Hypermethylation of the TGF-β target, ABCA1 is associated with poor prognosis in ovarian cancer patients. Clin Epigenetics. 2015;7:1; DOI:10.1186/s13148-014-0036-2.25628764
- Morales CR, Marat AL, Ni X, Yu Y, Oko R, Smith BT, Argraves WS. ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa. Biochem Biophys Res Commun. 2008;376:472–7; DOI:10.1016/j.bbrc.2008.09.009.1879361310.1016/j.bbrc.2008.09.009