Have a personal or library account? Click to login
Nucleotide, ribonucleotide and ribonucleoside binding belongs to differentially expressed genes in porcine epithelial oviductal cells during longterm primary cultivation Cover

Nucleotide, ribonucleotide and ribonucleoside binding belongs to differentially expressed genes in porcine epithelial oviductal cells during longterm primary cultivation

Open Access
|Dec 2019

References

  1. Avilés M, Gutiérrez-Adán A, Coy P. Oviductal secretions: will they be key factors for the future ARTs? MHR Basic Sci Reprod Med. 2010;16:896–906; DOI:10.1093/molehr/gaq056.10.1093/molehr/gaq056
  2. Zumoffen CM, Gil R, Caille AM, Morente C, Munuce MJ, Ghersevich SA. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction. Hum Reprod. 2013;28:1297–308; DOI:10.1093/humrep/det016.10.1093/humrep/det01623427237
  3. Nawrocki MJ, Celichowski P, Jankowski M, Kranc W, Bryja A, Borys-Wójcik S, Jeseta M, Antosik P, Bukowska D, Bruska M, Zabel M, Nowicki M, Kempisty B. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach. Med J Cell Biol. 2018;6:186–94; DOI:10.2478/acb-2018-0029.10.2478/acb-2018-0029
  4. Nawrocki MJ, Budna J, Celichowski P, Khozmi R, Bryja A, Kranc W, Borys S, Ciesiółka S, Knap S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Analysis of fructose and mannose – regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro. Adv Cell Biol. 2017;5:129–35; DOI:10.1515/acb-2017-0011.10.1515/acb-2017-0011
  5. Kranc W, Jankowski M, Budna J, Celichowski P, Khozmi R, Bryja A, Borys S, Dyszkiewicz-Konwińska M, Jeseta M, Magas M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach. Med J Cell Biol. 2018;6:18–26; DOI:10.2478/acb-2018-0004.10.2478/acb-2018-0004
  6. Kranc W, Brązert M, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Skowroński MT, Bruska M, Zabel M, Nowicki M, Kempisty B. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol Med Rep. 2019;19:1705–15; DOI:10.3892/mmr.2019.9837.
  7. Kulus M, Sujka-Kordowska P, Konwerska A, Celichowski P, Kranc W, Kulus J, Piotrowska-Kempisty H, Antosik P, Bukowska D, Iżycki D, Bruska M, Zabel M, Nowicki M, Kempisty B. New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture—Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles. Int J Mol Sci. 2019;20:3966; DOI:10.3390/ijms20163966.10.3390/ijms20163966
  8. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.2440339
  9. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-75; DOI:10.1093/nar/gkm415.1757667810.1093/nar/gkm415
  10. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300
  11. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–7; DOI:10.1093/nar/gki005.15608232
  12. Besenfelder U, Havlicek V, Brem G. Role of the Oviduct in Early Embryo Development. Reprod Domest Anim. 2012;47:156–63; DOI:10.1111/j.1439-0531.2012.02070.x.10.1111/j.1439-0531.2012.02070.x22827365
  13. Player MR, Torrence PF. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther. 1998;78:55–113; DOI:10.1016/s0163-7258(97)00167-8.10.1016/S0163-7258(97)00167-89623881
  14. Kakuta S, Shibata S, Iwakura Y. Genomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene Family. J Interf Cytokine Res. 2002;22:981–93; DOI:10.1089/10799900260286696.10.1089/10799900260286696
  15. Hartmann R, Olsen HS, Widder S, Jørgensen R, Justesen J. p59OASL, a 2’-5’ oligoadenylate synthetase like protein: A novel human gene related to the 2’-5’ oligoadenylate synthetase family. Nucleic Acids Res. 1998;26:4121–7; DOI:10.1093/nar/26.18.4121.10.1093/nar/26.18.41219722630
  16. Ishibashi M, Wakita T, Esumi M. 2’,5’-Oligoadenylate synthetase-like gene highly induced by hepatitis C virus infection in human liver is inhibitory to viral replication in vitro. Biochem Biophys Res Commun. 2010;392:397–402; DOI:10.1016/j.bbrc.2010.01.034.10.1016/j.bbrc.2010.01.03420074559
  17. Shibata S, Kakuta S, Hamada K, Sokawa Y, Iwakura Y. Cloning of a novel 2’,5’-oligoadenylate synthetase-like molecule, Oasl5 in mice. Gene. 2001;271:261–71; DOI:10.1016/s0378-1119(01)00508-x.10.1016/S0378-1119(01)00508-X11418248
  18. Evsikov A V, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006;20:2713–27; DOI:10.1101/gad.1471006.10.1101/gad.147100617015433
  19. Yan W, Ma L, Stein P, Pangas SA, Burns KH, Bai Y, Schultz RM, Matzuk MM. Mice Deficient in Oocyte-Specific Oligoadenylate Synthetase-Like Protein OAS1D Display Reduced Fertility. Mol Cell Biol. 2005;25:4615–24; DOI:10.1128/MCB.25.11.4615-4624.2005.1589986410.1128/MCB.25.11.4615-4624.2005
  20. Talukder AK, Rashid MB, Yousef MS, Kusama K, Shimizu T, Shimada M, Suarez SS, Imakawa K, Miyamoto A. Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci Rep. 2018;8:7850; DOI:10.1038/s41598-018-26224-8.2977720510.1038/s41598-018-26224-8
  21. Warfel NA, Kraft AS. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 2015;151:41–9; DOI:10.1016/j.pharmthera.2015.03.001.10.1016/j.pharmthera.2015.03.00125749412
  22. Magnuson NS, Wang Z, Ding G, Reeves R. Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 2010;6:1461–78; DOI:10.2217/fon.10.106.10.2217/fon.10.10620919829
  23. Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76; DOI:10.2217/fon.13.229.2479906610.2217/fon.13.229
  24. Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Ferrer I, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget. 2017;8:58872–86; DOI:10.18632/oncotarget.19438.28938604
  25. Wu Y, Deng Y, Zhu J, Duan Y, Weng WW, Wu X. Pim1 promotes cell proliferation and regulates glycolysis via interaction with MYC in ovarian cancer. Onco Targets Ther. 2018;11:6647–56; DOI:10.2147/OTT.S180520.3034929810.2147/OTT.S180520
  26. Hinz B. Myofibroblasts. Exp Eye Res. 2015;142:56–70; DOI:10.1016/j.exer.2015.07.009.
  27. Ge J, Burnier L, Adamopoulou M, Kwa MQ, Schaks M, Rottner K, Brake-busch C. RhoA, Rac1, and Cdc42 differentially regulate SMA and collagen i expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358–69; DOI:10.1074/jbc.RA117.001113.10.1074/jbc.RA117.001113
  28. Endsley MP, Moyle-Heyrman G, Karthikeyan S, Lantvit DD, Davis DA, Wei JJ, Burdette JE. Spontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumors. Front Oncol. 2015;5; DOI:10.3389/fonc.2015.00154.
  29. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denèfle P, Assmann G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5; DOI:10.1038/11921.10.1038/1192110431238
  30. Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ. A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry. 2000;39:14113–20; DOI:10.1021/bi0004192.10.1021/bi000419211087359
  31. Vaughan AM, Oram JF. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res. 2006;47:2433–43; DOI:10.1194/jlr.M600218-JLR200.10.1194/jlr.M600218-JLR20016902247
  32. Locatelli Y, Forde N, Blum H, Graf A, Piégu B, Mermillod P, Wolf E, Loner-gan P, Saint-Dizier M. Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. BMC Genomics. 2019;20; DOI:10.1186/s12864-019-5616-2.30898106
  33. Chou J-L, Huang R-L, Shay J, Chen L-Y, Lin S-J, Yan PS, Chao W-T, Lai Y-H, Lai Y-L, Chao T-K, Lee C-I, Tai C-K, Wu S-F, Nephew KP, Huang TH-M, Lai H-C, Chan MWY. Hypermethylation of the TGF-β target, ABCA1 is associated with poor prognosis in ovarian cancer patients. Clin Epigenetics. 2015;7:1; DOI:10.1186/s13148-014-0036-2.25628764
  34. Morales CR, Marat AL, Ni X, Yu Y, Oko R, Smith BT, Argraves WS. ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa. Biochem Biophys Res Commun. 2008;376:472–7; DOI:10.1016/j.bbrc.2008.09.009.1879361310.1016/j.bbrc.2008.09.009
Language: English
Page range: 161 - 169
Submitted on: Nov 3, 2019
Accepted on: Dec 8, 2019
Published on: Dec 21, 2019
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Mariusz J. Nawrocki, Rafał Sibiak, Sandra Kałużna, Maciej Brązert, Piotr Celichowski, Leszek Pawelczyk, Lisa Moncrieff, Bartosz Kempisty, Paul Mozdziak, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.