References
- Lan CW, Chen MJ, Tai KY, Yu DC, Yang YC, Jan PS, Yang YS, Chen HF, Ho HN. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling. Sci Rep. 2015;5; DOI:10.1038/srep14994.26459919
- Orisaka M, Tajima K, Tsang BK, Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. 2009;2; DOI:10.1186/1757-2215-2-9.19589134
- Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril., vol. 99, 2013, p. 979–97; DOI:10.1016/j.fertnstert.2013.01.129.10.1016/j.fertnstert.2013.01.129
- Buganim Y, Jaenisch R. Transdifferentiation by defined factors as a powerful research tool to address basic biological questions. Cell Cycle. 2012;11:4485–6; DOI:10.4161/cc.22665.10.4161/cc.2266523165203
- Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30:1255–61; DOI:10.1007/s10815-013-0068-0.2389326610.1007/s10815-013-0068-0
- Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27:210–9; DOI:10.1634/stemcells.2008-0233.10.1634/stemcells.2008-023319224509
- Kossowska-Tomaszczuk K, De Geyter C. Cells with Stem Cell Characteristics in Somatic Compartments of the Ovary. Biomed Res Int. 2013;2013:1–8; DOI:10.1155/2013/310859.
- Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.2440339
- Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-75; DOI:10.1093/nar/gkm415.1757667810.1093/nar/gkm415
- Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300
- von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–7; DOI:10.1093/nar/gki005.15608232
- Ciesiółka S, Budna J, Jopek K, Bryja A, Kranc W, Chachuła A, Borys S, Dyszkiewicz Konwińska M, Ziółkowska A, Antosik P, Bukowska D, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Influence of Estradiol-17beta on Progesterone and Estrogen Receptor mRNA Expression in Porcine Follicular Granulosa Cells during Short-Term, in Vitro Real-Time Cell Proliferation. Biomed Res Int. 2016;2016; DOI:10.1155/2016/8431018.28116305
- Kranc W, Budna J, Kahan R, Chachuła A, Bryja A, Ciesiółka S, Borys S, Antosik MP, Bukowska D, Brussow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents. 2017;31:1–8.28337864
- Kranc W, Brązert M, Ożegowska K, Nawrocki M, Budna J, Celichowski P, Dyszkiewicz-Konwińska M, Jankowski M, Jeseta M, Pawelczyk L, Bruska M, Nowicki M, Zabel M, Kempisty B. Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells—A Primary Culture Approach. Int J Mol Sci. 2017;18:2673; DOI:10.3390/ijms18122673.10.3390/ijms18122673
- Chermuła B, Brazert M, Izycki D, Ciesiółka S, Kranc W, Celichowski P, Ozegowska K, Nawrocki MJ, Jankowski M, Jeseta M, Antosik P, Bukowska D, Skowroński MT, Brussow KP, Bruska M, Pawelczyk L, Zabel M, Nowicki M, Kempisty B. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture in Vitro. Biomed Res Int. 2019;2019; DOI:10.1155/2019/6545210.30834271
- Kranc W, Brązert M, Budna J, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Chermuła B, Dyszkiewicz-Konwińska M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Bruska M, Nowicki M, Zabel M, Kempisty B. Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol. 2019;151:125–43; DOI:10.1007/s00418-018-1750-1.10.1007/s00418-018-1750-130382374
- Kulus M, Sujka-Kordowska P, Konwerska A, Celichowski P, Kranc W, Kulus J, Piotrowska-Kempisty H, Antosik P, Bukowska D, Iżycki D, Bruska M, Zabel M, Nowicki M, Kempisty B. New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture—Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles. Int J Mol Sci. 2019;20:3966; DOI:10.3390/ijms20163966.10.3390/ijms20163966
- Kranc W, Brązert M, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Skowroński MT, Bruska M, Zabel M, Nowicki M, Kempisty B. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol Med Rep. 2019;19:1705–15; DOI:10.3892/mmr.2019.9837.
- Jakobsson A, Westerberg R, Jacobsson A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog Lipid Res. 2006;45:237–49; DOI:10.1016/j.plipres.2006.01.004.10.1016/j.plipres.2006.01.00416564093
- Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res. 2010;49:186–99; DOI:10.1016/j.plipres.2009.12.002.10.1016/j.plipres.2009.12.00220018209
- Denic V, Weissman JS. A Molecular Caliper Mechanism for Determining Very Long-Chain Fatty Acid Length. Cell. 2007;130:663–77; DO-I:10.1016/j.cell.2007.06.031.10.1016/j.cell.2007.06.03117719544
- Warzych E, Pawlak P, Pszczola M, Cieslak A, Madeja ZE, Lechniak D. Interactions of bovine oocytes with follicular elements with respect to lipid metabolism. Anim Sci J. 2017;88:1491–7; DOI:10.1111/asj.12799.2840200710.1111/asj.12799
- Warzych E, Pawlak P, Pszczola M, Cieslak A, Lechniak D. Pre-pubertal heifers versus cows—The differences in the follicular environment. Theriogenology. 2017;87:36–47; DOI:10.1016/j.theriogenology.2016.08.007.10.1016/j.theriogenology.2016.08.007
- Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: Implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics. 2018;19; DOI:10.1186/s12864-018-4982-5.30134841
- Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB. Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J Lipid Res. 2005;46:706–15; DOI:10.1194/jlr.M400335-JLR200.10.1194/jlr.M400335-JLR20015654130
- Annes K, Müller DB, Vilela JAP, Valente RS, Caetano DP, Cibin FWS, Milazzotto MP, Mesquita FS, Belaz KRA, Eberlin MN, Sudano MJ. Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reprod Fertil Dev. 2019;31:462–72; DOI:10.1071/RD18109.3028257110.1071/RD18109
- Sudano MJ, Rascado TDS, Tata A, Belaz KRA, Santos VG, Valente RS, Mesquita FS, Ferreira CR, Araújo JP, Eberlin MN, Landim-Alvarenga FDC. Lipidome signatures in early bovine embryo development. Theriogenology. 2016;86:472-484.e1; DOI:10.1016/j.theriogenology.2016.03.025.2710797210.1016/j.theriogenology.2016.03.025
- Brockmöller SF, Bucher E, Müller BM, Budczies J, Hilvo M, Griffin JL, Orešič M, Kallioniemi O, Iljin K, Loibl S, Darb-Esfahani S, Sinn B V., Klauschen F, Prinzler J, Bangemann N, Ismaeel F, Fiehn O, Dietel M, Denkert C. Integration of metabolomics and expression of glycerol-3-phosphate acyltransferase (GPAM) in breast cancer-link to patient survival, hormone receptor status, and metabolic profiling. J Proteome Res. 2012;11:850–60; DOI:10.1021/pr200685r.10.1021/pr200685r22070544
- Bertevello PS, Teixeira-Gomes AP, Seyer A, Carvalho AV, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V, Papillier P, Maillard V, Elis S, Uzbekova S. Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int J Mol Sci. 2018;19; DOI:10.3390/ijms19103261.30347829
- Yu H, Zhao Z, Yu X, Li J, Lu C, Yang R. Bovine lipid metabolism related gene GPAM: Molecular characterization, function identification, and association analysis with fat deposition traits. Gene. 2017;609:9–18; DOI:10.1016/j.gene.2017.01.031.10.1016/j.gene.2017.01.03128131819
- Marchan R, Büttner B, Lambert J, Edlund K, Glaeser I, Blaszkewicz M, Leonhardt G, Marienhoff L, Kaszta D, Anft M, Watzl C, Madjar K, Grinberg M, Rempel E, Hergenröder R, Selinski S, Rahnenführer J, Lesjak MS, Stewart JD, Cadenas C, Hengstler JG. Glycerol-3-phosphate acyltransferase 1 promotes tumor cell migration and poor survival in ovarian carcinoma. Cancer Res. 2017;77:4589–601; DOI:10.1158/0008-5472. CAN-16-2065.10.1158/0008-5472.CAN-16-206528652252