Have a personal or library account? Click to login

References

  1. Yazdani M. Technical aspects of oxygen level regulation in primary cell cultures: A review. Interdiscip Toxicol. 2016;9:85–9; DOI:10.1515/intox-2016-0011.10.1515/intox-2016-001128652851
  2. Jagannathan L, Cuddapah S, Costa M. Oxidative stress under ambient and physiological oxygen tension in tissue culture. Curr Pharmacol Reports. 2016;2:64; DOI:10.1007/S40495-016-0050-5.10.1007/s40495-016-0050-5
  3. Steller JG, Alberts JR, Ronca AE. Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment. Int J Mol Sci. 2018;19; DOI:10.3390/ijms19123729.30477143
  4. Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull. 2014;30:271–81; DOI:10.1007/s12264-013-1423-y.2466486610.1007/s12264-013-1423-y
  5. Ozsurekci Y, Aykac K. Oxidative Stress Related Diseases in Newborns. Oxid Med Cell Longev. 2016;2016:2768365; DOI:10.1155/2016/2768365.27403229
  6. Crotty GF, Ascherio A, Schwarzschild MA. Targeting urate to reduce oxidative stress in Parkinson disease. Exp Neurol. 2017;298:210–24; DOI:10.1016/j.expneurol.2017.06.017.2862291310.1016/j.expneurol.2017.06.017
  7. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep. 2017;19:42; DOI:10.1007/s11883-017-0678-6.10.1007/s11883-017-0678-628921056
  8. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28; DOI:10.1186/1477-7827-3-28.10.1186/1477-7827-3-2816018814
  9. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16; DOI:10.1186/S12958-018-0391-5.30126412
  10. Agarwal A, Allamaneni SSR. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online. 2004;9:338–47.10.1016/S1472-6483(10)62151-715353087
  11. Liu Y, Qiang W, Xu X, Dong R, Karst AM, Liu Z, Kong B, Drapkin RI, Wei J-J. Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget. 2015;6:38983–98; DOI:10.18632/oncotarget.5493.26472020
  12. Huang H-S, Hsu C-F, Chu S-C, Chen P-C, Ding D-C, Chang M-Y, Chu T-Y. Haemoglobin in pelvic fluid rescues Fallopian tube epithelial cells from reactive oxygen species stress and apoptosis. J Pathol. 2016;240:484–94; DOI:10.1002/path.4807.10.1002/path.480727625309
  13. Uberti F, Morsanuto V, Lattuada D, Colciaghi B, Cochis A, Bulfoni A, Colombo P, Bolis G, Molinari C. Protective effects of vitamin D3 on fimbrial cells exposed to catalytic iron damage. J Ovarian Res. 2016;9:34; DOI:10.1186/s13048-016-0243-x.10.1186/s13048-016-0243-x27317433
  14. Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017;232:R1–26; DOI:10.1530/JOE-16-0302.10.1530/JOE-16-030227875265
  15. Ferraz MAMM, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Hölker M, Besenfelder U, Mokry M, Vos PLAM, Stout TAE, Le Gac S, Gadella BM. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun. 2018;9:4934; DOI:10.1038/s41467-018-07119-8.3046738310.1038/s41467-018-07119-8
  16. Morin SJ. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? J Assist Reprod Genet. 2017;34:309–14; DOI:10.1007/s10815-017-0880-z.2818105110.1007/s10815-017-0880-z
  17. Kranc W, Jankowski M, Budna J, Celichowski P, Khozmi R, Bryja A, Borys S, Dyszkiewicz-Konwińska M, Jeseta M, Magas M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach. Med J Cell Biol. 2018;6:18–26; DOI:10.2478/acb-2018-0004.10.2478/acb-2018-0004
  18. Budna J, Celichowski P, Knap S, Jankowski M, Magas M, Nawrocki MJ, Ramlau P, Nowicki A, Rojewska M, Chermuła B, Jeseta M, Antosik P, Bukowska D, Bruska M, Zabel M, Nowicki M, Kempisty B. Fatty Acids Related Genes Expression Undergo Substantial Changes in Porcine Oviductal Epithelial Cells During Long-Term Primary Culture. Med J Cell Biol. 2018;6:39–47; DOI:10.2478/acb-2018-0008.10.2478/acb-2018-0008
  19. Budna-Tukan J, Światły-Błaszkiewicz A, Celichowski P, Kałużna S, Konwerska A, Sujka-Kordowska P, Jankowski M, Kulus M, Jeseta M, Piotrowska-Kempisty H, Józkowiak M, Antosik P, Bukowska D, Skowroński MT, Matysiak J, Nowicki M, Kempisty B. “Biological Adhesion” is a Significantly Regulated Molecular Process during Long-Term Primary In Vitro Culture of Oviductal Epithelial Cells (Oecs): A Transcriptomic and Proteomic Study. Int J Mol Sci. 2019;20:3387; DOI:10.3390/ijms20143387.10.3390/ijms20143387
  20. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-75; DOI:10.1093/nar/gkm415.1757667810.1093/nar/gkm415
  21. Walter W, Sánchez-Cabo F, Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300
  22. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2004;33:D433–7; DOI:10.1093/nar/gki005.10.1093/nar/gki005
  23. Reeg S, Grune T. Protein Oxidation in Aging: Does It Play a Role in Aging Progression? Antioxid Redox Signal. 2015;23:239–55; DOI:10.1089/ars.2014.6062.2517848210.1089/ars.2014.6062
  24. Dunlop RA, Brunk UT, Rodgers KJ. Critical Review Oxidized Proteins: Mechanisms of Removal and Consequences of Accumulation n.d.; DOI:10.1002/iub.189.
  25. Tsunoda S, Kibe N, Kurahashi T, Fujii J. Differential responses of SOD-1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch Biochem Biophys. 2013;537:5–11; DOI:10.1016/j.abb.2013.06.008.10.1016/j.abb.2013.06.008
  26. García-Martínez S, Sánchez Hurtado MA, Gutiérrez H, Sánchez Margallo FM, Romar R, Latorre R, Coy P, López Albors O. Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. MHR Basic Sci Reprod Med. 2018;24:260–70; DOI:10.1093/molehr/gay008.10.1093/molehr/gay008
  27. Horree N, Heintz APM, Sie-Go S, Van Diest PJ. p16 is consistently expressed in endometrial tubal metaplasia. vol. 29. 2007.
  28. Santamaría D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P, Malumbres M, Barbacid M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448:811–5; DOI:10.1038/nature06046.10.1038/nature0604617700700
  29. Wang X, Chen Y, Qin W, Zhang W, Wei S, Wang J, Liu FQ, Gong L, An FS, Zhang Y, Chen Z-Y, Zhang M-X. Arginase I Attenuates Inflammatory Cytokine Secretion Induced by Lipopolysaccharide in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2011;31:1853–60; DOI:10.1161/ATVBAHA.111.229302.2161714010.1161/ATVBAHA.111.229302
  30. Chiribau CB, Cheng L, Cucoranu IC, Yu Y-S, Clempus RE, Sorescu D. FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem. 2008;283:8211–7; DOI:10.1074/jbc.M710610200.10.1074/jbc.M71061020018195003
  31. Zhang H, Go Y-M, Jones DP. Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch Biochem Biophys. 2007;465:119–26; DOI:10.1016/J.ABB.2007.05.001.1754804710.1016/j.abb.2007.05.001
  32. Bomfim MM, Andrade GM, Del Collado M, Sangalli JR, Fontes PK, Nogueira MFG, Meirelles F V, da Silveira JC, Perecin F. Antioxidant responses and deregulation of epigenetic writers and erasers link oxidative stress and DNA methylation in bovine blastocysts. Mol Reprod Dev. 2017;84:1296–305; DOI:10.1002/mrd.22929.10.1002/mrd.2292929106766
  33. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, Itoh B, Wang J, Komatsu Y, Yang YR, Hikasa H, Horie Y, Yamashita T, Kamijo T, Zhang Y, Zhu Y, Prives C, Nakano T, Mak TW, Sasaki T, Maehama T, Mori M, Suzuki A. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med. 2011;17:944–51; DOI:10.1038/nm.2392.10.1038/nm.239221804542
  34. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci. 2001;98:11598–603; DOI:10.1073/pnas.181181198.10.1073/pnas.181181198
  35. Houle F, Poirier A, Dumaresq J, Huot J. DAP kinase mediates the phosphorylation of tropomyosin-1 downstream of the ERK pathway, which regulates the formation of stress fibers in response to oxidative stress. J Cell Sci. 2007;120:3666–77; DOI:10.1242/jcs.003251.10.1242/jcs.00325117895359
  36. Wang J, Guan J, Lu Z, Jin J, Cai Y, Wang C, Wang F. Clinical and tumor significance of tropomyosin-1 expression levels in renal cell carcinoma. Oncol Rep. 2015;33:1326–34; DOI:10.3892/or.2015.3733.2560753010.3892/or.2015.3733
  37. Kranc W, Budna J, Chachuła A, Borys S, Bryja A, Rybska M, Ciesiółka S, Sumelka E, Jeseta M, Brüssow KP, Bukowska D, Antosik P, Bruska M, Nowicki M, Zabel M, Kempisty B. “Cell Migration” Is the Ontology Group Differentially Expressed in Porcine Oocytes Before and After In Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36:273–82; DOI:10.1089/dna.2016.3425.10.1089/dna.2016.342528384068
  38. Bergqvist A-S, Killian G, Erikson D, Hoshino Y, Båge R, Sato E, Rodríguez--Martínez H. Detection of Fas ligand in the bovine oviduct. Anim Reprod Sci. 2005;86:71–88; DOI:10.1016/j.anireprosci.2004.07.009.10.1016/j.anireprosci.2004.07.00915721660
  39. Lee RK-K, Tseng H-C, Hwu Y-M, Fan C-C, Lin M-H, Yu J-J, Yeh L-Y, Li S-H. Expression of cystatin C in the female reproductive tract and its effect on human sperm capacitation. Reprod Biol Endocrinol. 2018;16:8; DOI:10.1186/s12958-018-0327-0.2937861510.1186/s12958-018-0327-0
Language: English
Page range: 39 - 47
Submitted on: Jul 21, 2019
Accepted on: Aug 18, 2019
Published on: Oct 12, 2019
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Ievgeniia Kocherova, Maciej Brązert, Patrycja Sujka-Kordowska, Aneta Konwerska, Magdalena Kulus, Błażej Chermuła, Piotr Celichowski, Hanna Piotrowska-Kempisty, Paweł Antosik, Dorota Bukowska, Małgorzata Bruska, Leszek Pawelczyk, Maciej Zabel, Michał Nowicki, Bartosz Kempisty, Michal Jeseta, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.