Have a personal or library account? Click to login
Genes regulating programmed cell death are significantly upregulated in porcine immature oocytes Cover

Genes regulating programmed cell death are significantly upregulated in porcine immature oocytes

Open Access
|Jul 2019

References

  1. 1. Jamnongjit M, Hammes SR. Oocyte maturation: the coming of age of a germ cell. Semin Reprod Med. 2005;23:234–41; DOI:10.1055/s-2005-872451.10.1055/s-2005-872451148243016059829
  2. 2. Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D. Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability. Med J Cell Biol. 2018;1; DOI:10.2478/acb-2018-0003.10.2478/acb-2018-0003
  3. 3. Coticchio G, Dal Canto M, Renzini MM, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R. Oocyte maturation: Gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2014; DOI:10.1093/humupd/dmv011.10.1093/humupd/dmv01125744083
  4. 4. Watson AJ. Oocyte cytoplasmic maturation: A key mediator of oocyte and embryo developmental competence1. J Anim Sci. 2007;85:E1–3; DOI:10.2527/jas.2006-432.10.2527/jas.2006-43217322120
  5. 5. Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61:414–24; DOI:10.1002/mrd.10102.10.1002/mrd.1010211835587
  6. 6. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. MHR Basic Sci Reprod Med. 2010;16:715–25; DOI:10.1093/molehr/gaq031.10.1093/molehr/gaq03120435609
  7. 7. Gilchrist R., Ritter L., Armstrong D. Oocyte–somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82–83:431–46; DOI:10.1016/j.anireprosci.2004.05.017.10.1016/j.anireprosci.2004.05.01715271471
  8. 8. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77; DOI:10.1093/humupd/dmm040.10.1093/humupd/dmm04018175787
  9. 9. Regassa A, Rings F, Hoelker M, Cinar U, Tholen E, Looft C, Schellander K, Tesfaye D. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics. 2011;12; DOI:10.1186/1471-2164-12-57.10.1186/1471-2164-12-57304533321261964
  10. 10. Tatemoto H, Sakurai N, Muto N. Protection of Porcine Oocytes Against Apoptotic Cell Death Caused by Oxidative Stress During In vitro Maturation: Role of Cumulus Cells1. Biol Reprod. 2000;63:805–10; DOI:10.1095/biolreprod63.3.805.10.1095/biolreprod63.3.80510952924
  11. 11. Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet. 2010;27:29–39; DOI:10.1007/s10815-009-9376-9.10.1007/s10815-009-9376-9282661920039198
  12. 12. Dyck MK, Zhou C, Tsoi S, Grant J, Dixon WT, Foxcroft GR. Reproductive technologies and the porcine embryonic transcriptome. Anim Reprod Sci. 2014;149:11–8; DOI:10.1016/J.ANIREPROSCI.2014.05.013.10.1016/j.anireprosci.2014.05.01324953007
  13. 13. Lonergan P, Fair T. Maturation of Oocytes in vitro. Annu Rev Anim Biosci. 2016;4:255–68; DOI:10.1146/annurev-animal-022114-110822.10.1146/annurev-animal-022114-11082226566159
  14. 14. Li Q, McKenzie LJ, Matzuk MM. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol Hum Reprod. 2008;14:673–8; DOI:10.1093/molehr/gan064.10.1093/molehr/gan064263944818996952
  15. 15. Lourenço B, Sousa AP, Almeida-Santos T, Ramalho-Santos J. Relation of cumulus cell status with single oocyte maturity, fertilization capability and patient age. J Reprod Infertil. 2014;15:15–21.
  16. 16. Janowski D, Salilew-Wondim D, Torner H, Tesfaye D, Ghanem N, Tomek W, El-Sayed A, Schellander K, Hölker M. Incidence of apoptosis and transcript abundance in bovine follicular cells is associated with the quality of the enclosed oocyte. Theriogenology. 2012;78:656-669.e5; DOI:10.1016/J.THERIOGENOLOGY.2012.03.012.10.1016/j.theriogenology.2012.03.01222578626
  17. 17. Walter W, Sánchez-Cabo F, Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv30025964631
  18. 18. Tiwari M, Prasad S, Tripathi A, Pandey AN, Ali I, Singh AK, Shrivastav TG, Chaube SK. Apoptosis in mammalian oocytes: a review. Apoptosis. 2015;20:1019–25; DOI:10.1007/s10495-015-1136-y.10.1007/s10495-015-1136-y25958165
  19. 19. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516; DOI:10.1080/01926230701320337.10.1080/01926230701320337211790317562483
  20. 20. Kasof GM, Goyal L, White E. Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol. 1999;19:4390–404; DOI:10.1128/MCB.19.6.4390.10.1128/MCB.19.6.439010439810330179
  21. 21. Fautsch MP, Vrabel A, Subramaniam M, Hefferen TE, Spelsberg TC, Wieben ED. TGFβ-inducible early gene (TIEG) also codes for early growth response a (EGRα): Evidence of multiple transcripts from alternate promoters. Genomics. 1998; DOI:10.1006/geno.1998.5388.10.1006/geno.1998.53889721211
  22. 22. Tachibana I, Imoto M, Adjei PN, Gores GJ, Subramaniam M, Spelsberg TC, Urrutia R. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest. 1997;99:2365–74; DOI:10.1172/JCI119418.10.1172/JCI119418
  23. 23. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol. 1998;18:7499–509.10.1128/MCB.18.12.7499
  24. 24. Shi Y, An J, Liang J, Hayes SE, Sandusky GE, Stramm LE, Yang NN. Characterization of a mutant pancreatic eIF-2alpha kinase, PEK, and co-localization with somatostatin in islet delta cells. J Biol Chem. 1999;274:5723–30; DOI:10.1074/JBC.274.9.5723.10.1074/jbc.274.9.5723
  25. 25. Kittler R, Putz G, Pelletier L, Poser I, Heninger A-K, Drechsel D, Fischer S, Konstantinova I, Habermann B, Grabner H, Yaspo M-L, Himmelbauer H, Korn B, Neugebauer K, Pisabarro MT, Buchholz F. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature. 2004;432:1036–40; DOI:10.1038/nature03159.10.1038/nature03159
  26. 26. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, LaVail MM, Walter P. IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response. Science (80- ). 2007;318:944–9; DOI:10.1126/science.1146361.10.1126/science.1146361
  27. 27. Suzuki H, Kanagawa H, Nishihira J. Evidence for the presence of macrophage migration inhibitory factor in murine reproductive organs and early embryos. Immunol Lett. 1996;51:141–7.10.1016/0165-2478(96)02543-6
  28. 28. Wada S, Fujimoto S, Mizue Y, Nishihira J. Macrophage migration inhibitory factor in the human ovary: presence in the follicular fluids and production by granulosa cells. Biochem Mol Biol Int. 1997;41:805–14.10.1080/15216549700201841
  29. 29. Johnson J, Espinoza T, McGaughey RW, Rawls A, Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev. 2001;109:355–61; DOI:10.1016/S0925-4773(01)00523-8.10.1016/S0925-4773(01)00523-8
  30. 30. Zhang C-P, Yang J-L, Zhang J, Li L, Huang L, Ji S-Y, Hu Z-Y, Gao F, Liu Y-X. Notch Signaling Is Involved in Ovarian Follicle Development by Regulating Granulosa Cell Proliferation. Endocrinology. 2011;152:2437–47; DOI:10.1210/en.2010-1182.10.1210/en.2010-118221427220
  31. 31. Xu J, Gridley T. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol. 2013;11:13; DOI:10.1186/1741-7007-11-13.10.1186/1741-7007-11-13360647523406467
  32. 32. Schlesinger TK, Bonvin C, Jarpe MB, Fanger GR, Cardinaux J-R, Johnson GL, Widmann C. Apoptosis stimulated by the 91-kDa caspase cleavage MEKK1 fragment requires translocation to soluble cellular compartments. J Biol Chem. 2002;277:10283–91; DOI:10.1074/jbc.M106885200.10.1074/jbc.M10688520011782455
  33. 33. Ou X-H, Li S, Xu B-Z, Chen L-N, Jiang M-X, Chen S-Q, Chen N-Q. Mitogen-activated protein kinase-activated protein kinase 2 is a critical regulator of pig oocyte meiotic maturation. Reprod Fertil Dev. 2015;29:223–33; DOI:10.1071/RD15150.10.1071/RD1515026193799
  34. 34. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD, Kim DK, Lee KW, Han PL, Rhee SG, Choi I. The Journal of Immunology. J Immunol. 2000;159:3921–8; DOI:10.4049/jimmunol.164.12.6287.10.4049/jimmunol.164.12.628710843682
  35. 35. Wang Y, De Keulenaer GW, Lee RT. Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem. 2002;277:26496–500; DOI:10.1074/jbc.M202133200.10.1074/jbc.M20213320012011048
  36. 36. Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, Dupont J, Ponsart C, Mermillod P, Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev. 2013;80:166–82; DOI:10.1002/mrd.22148.10.1002/mrd.2214823280668
  37. 37. Lee S-Y, Lee H-S, Kim E-Y, Ko J-J, Yoon TK, Lee W-S, Lee K-A. Thioredoxin-Interacting Protein Regulates Glucose Metabolism and Affects Cytoplasmic Streaming in Mouse Oocytes. PLoS One. 2013;8:e70708; DOI:10.1371/journal.pone.0070708.10.1371/journal.pone.0070708374726423976953
  38. 38. Fisher S, Gearhart JD, Oster-Granite ML. Expression of the amyloid precursor protein gene in mouse oocytes and embryos. Proc Natl Acad Sci U S A. 1991;88:1779.10.1073/pnas.88.5.1779511081900367
  39. 39. Kimura A, Kakinuma K, Yonezawa S, Takahashi T. Expression of β-Amyloid Precursor Protein in the Porcine Ovary. Zoolog Sci. 2000;17:769–77; DOI:10.2108/zsj.17.769.10.2108/zsj.17.769
  40. 40. Khan DR, Landry DA, Fournier É, Vigneault C, Blondin P, Sirard M-A. Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows. Physiol Genomics. 2016;48:633–43; DOI:10.1152/physiolgenomics.00050.2016.10.1152/physiolgenomics.00050.2016500545727401219
Language: English
Page range: 1 - 10
Submitted on: Apr 18, 2019
Accepted on: May 29, 2019
Published on: Jul 25, 2019
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Katarzyna Stefańska, Małgorzata Józkowiak, Paweł Antosik, Dorota Bukowska, Piotr Celichowski, Małgorzata Bruska, Michał Nowicki, Bartosz Kempisty, Jana Zakova, Marie Machatkova, Michal Jeseta, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.