Have a personal or library account? Click to login
Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture – a microarray assays Cover

Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture – a microarray assays

Open Access
|Jan 2019

References

  1. 1. Kobayashi A, Shawlot W, Kania A, Behringer RR. Requirement of Lim1 for female reproductive tract development. Development. 2004;131(3):539-49; DOI:10.1242/dev.00951.10.1242/dev.00951
  2. 2. Massé J, Watrin T, Laurent A, Deschamps S, Guerrier D, Pellerin I. The developing female genital tract: from genetics to epigenetics. Int J Dev Biol. 2009;53(2-3):411-24; DOI:10.1387/ijdb.082680jm.10.1387/ijdb.082680jm
  3. 3. Yin Y, Ma L. Development of the Mammalian Female Reproductive Tract. J Biochem. 2005;137(6):677-83; DOI:10.1093/jb/mvi087.10.1093/jb/mvi087
  4. 4. Mullen RD, Behringer RR. Molecular genetics of Müllerian duct formation, regression and differentiation. Sex Dev. 2014;8(5):281-96; DOI:10.1159/000364935.10.1159/000364935
  5. 5. Kurita T. Normal and Abnormal Epithelial Differentiation in the Female Reproductive Tract. Differentiation. 2011;82(3):117-26; DOI:10.1016/j.diff.2011.04.008.10.1016/j.diff.2011.04.008
  6. 6. Bernascone I, Hachimi M, Martin-Belmonte F. Signaling Networks in Epithelial Tube Formation. Cold Spring Harb Perspect Biol. 2017;9(12):a027946; DOI:10.1101/cshperspect.a027946.10.1101/cshperspect.a027946
  7. 7. Leese HJ. The formation and function of oviduct fluid. J Reprod Fertil. 1988;82(2):843-56; DOI:10.1530/jrf.0.0820843.10.1530/jrf.0.0820843
  8. 8. Mondéjar I, Acuña OS, Izquierdo-Rico MJ, Coy P, Avilés M. The Oviduct: Functional Genomic and Proteomic Approach. Reprod Domest Anim. 2012;47(3):22-9; DOI:10.1111/j.1439-0531.2012.02027.x.10.1111/j.1439-0531.2012.02027.x
  9. 9. Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-R26; DOI:10.1530/JOE-16-0302.10.1530/JOE-16-0302
  10. 10. Abe H, Hoshi H. Morphometric and ultrastructural changes in ciliated cells of the oviductal epithelium in prolific Chinese Meishan and Large White pigs during the oestrous cycle. Reprod Domest Anim. 2008;43(1):66-73; DOI:10.1111/j.1439-0531.2007.00856.x.10.1111/j.1439-0531.2007.00856.x
  11. 11. White KL, Hehnke K, Rickords LF, Southern LL, Thompson DL Jr, Wood TC. Early embryonic development in vitro by coculture with oviductal epithelial cells in pigs. Biol Reprod. 1989;41(3):425-30.10.1095/biolreprod41.3.425
  12. 12. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M, Sehouli J, Fotopoulou C, Meyer TF. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989; DOI:10.1038/ncomms9989.10.1038/ncomms9989
  13. 13. Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod. 1991;44(1):102-7.10.1095/biolreprod44.1.102
  14. 14. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413(6856):603-9; DOI:10.1038/35098027.10.1038/35098027
  15. 15. Nagai T, Funahashi H, Yoshioka K, Kikuchi K. Up date of in vitro production of porcine embryos. Front Biosci. 2006;11:2565-73; DOI:10.2741/1991.10.2741/1991
  16. 16. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-W175; DOI: 10.1093/nar/gkm415.10.1093/nar/gkm415
  17. 17. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912-4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300
  18. 18. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433-7; DOI:10.1093/nar/gki005.10.1093/nar/gki005
  19. 19. Chen D, Zhao M, Mundy GR. Bone Morphogenetic Proteins. Growth Factors. 2004;22(4):233-41; DOI:10.1080/08977190412331279890.10.1080/08977190412331279890
  20. 20. Lochab AK, Extavour CG. Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Dev Biol. 2017;427(2):258-269; DOI: 10.1016/j.ydbio.2017.03.002.10.1016/j.ydbio.2017.03.002
  21. 21. Erickson GF, Fuqua L, Shimasaki S. Analysis of spatial and temporal expression patterns of bone morphogenetic protein family members in the rat uterus over the estrous cycle. J Endocrinol. 2004;182(2):203-17.10.1677/joe.0.1820203
  22. 22. von Schalburg KR, McCarthy SP, Rise ML, Hutson JC, Davidson WS, Koop BF. Expression of morphogenic genes in mature ovarian and testicular tissues: potential stem-cell niche markers and patterning factors. Mol Reeprod Dev. 2006;73(2):142-52.10.1002/mrd.20359
  23. 23. Abir R, Ben-Haroush A, Melamed N, Felz C, Krissi H, Fisch B. Expression of bone morphogenetic proteins 4 and 7 and their receptors IA, IB, and II in human ovaries from fetuses and adults. Fertil Steril. 2008;89(5):1430-40; DOI: 10.1016/j.fertnstert.2007.04.064.10.1016/j.fertnstert.2007.04.064
  24. 24. Tanwar PS, McFarlane JR. Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice. Reproduction. 2011;142(4):573-9; DOI:10.1530/REP-10-0299.10.1530/REP-10-0299
  25. 25. Böttcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005;26(1):63-77; DOI:10.1210/er.2003-0040.10.1210/er.2003-0040
  26. 26. Deng C, Bedford M, Li C, Xu X, Yang X, Dunmore J, Leder P. Fibroblast Growth Factor Receptor-1 (FGFR-1) Is Essential for Normal Neural Tube and Limb Development. Dev Biol. 1997;185(1):42-54; DOI: 10.1006/dbio.1997.8553.10.1006/dbio.1997.8553
  27. 27. Pond AC, Bin X, Batts T, Roarty K, Hilsenbeck S, Rosen JM. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function. Stem Cells. 2013;31(1):178-89; DOI:10.1002/stem.1266.10.1002/stem.1266
  28. 28. Guerra DM, Giometti IC, Price CA, Andrade PB, Castilho AC, Machado MF, Ripamonte P, Papa PC, Buratini J Jr. Expression of fibroblast growth factor receptors during development and regression of the bovine corpus luteum. Reprod Fertil Dev. 2008;20(6):659-64; DOI:10.1071/RD07114.10.1071/RD07114
  29. 29. Edwards AK, van den Heuvel MJ, Wessels JM, Lamarre J, Croy BA, Tayade C. Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin-1 and their receptors at the porcine maternal-fetal interface. Reprod Biol Endocrinol. 2011;9:5; DOI:10.1186/1477-7827-9-5.10.1186/1477-7827-9-5
  30. 30. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129(23):4321-4327; DOI:10.1242/jcs.190546.10.1242/jcs.190546
  31. 31. Naik A, Al-Yahyaee A, Abdullah N, Sam JE, Al-Zeheimi N, Yaish MW, Adham SA. Neuropilin-1 promotes the oncogenic Tenascin-C/integrin β3 pathway and modulates chemoresistance in breast cancer cells. BMC Cancer. 2018;18(1):533; DOI:10.1186/s12885-018-4446-y.10.1186/s12885-018-4446-y
  32. 32. Mok SC, Wong KK, Chan RK, Lau CC, Tsao SW, Knapp RC, Berkowitz RS. Molecular Cloning of Differentially Expressed Genes in Human Epithelial Ovarian Cancer. Gynecol Oncol. 1994;52(2):247-52; DOI:10.1006/gyno.1994.1040.10.1006/gyno.1994.1040
  33. 33. Hocevar BA, Smine A, Xu XX, Howe PH. The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. EMBO J. 2001;20(11):2789-801; DOI: 10.1093/emboj/20.11.2789.10.1093/emboj/20.11.2789
  34. 34. Rosenbauer F, Kallies A, Scheller M, Knobeloch KP, Rock CO, Schwieger M, Stocking C, Horak I. Disabled-2 is transcriptionally regulated by ICSBP and augments macrophage spreading and adhesion. EMBO J. 2002;21(3):211-20; DOI:10.1093/emboj/21.3.211.10.1093/emboj/21.3.211
  35. 35. Alwosaibai K, Abedini A, Al-Hujaily EM, Tang Y, Garson K, Collins O, Vanderhyden BC. PAX2 maintains the differentiation of mouse oviductal epithelium and inhibits the transition to a stem cell-like state. Oncotarget. 2017;8(44):76881-76897; DOI:10.18632/oncotarget.20173.10.18632/oncotarget.20173
  36. 36. Bedford FK, Ashworth A, Enver T, Wiedemann LM. HEX: a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human. Nucleic Acids Res. 1993;21(5):1245-9.10.1093/nar/21.5.1245
  37. 37. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11(1):72-82.10.1101/gad.11.1.72
  38. 38. Soufi A, Jayaraman PS. PRH/Hex: an oligomeric transcription factor and multifunctional regulator of cell fate. Biochem J. 2008;412(3):399-413; DOI:10.1042/BJ20080035.10.1042/BJ20080035
  39. 39. Kershaw RM, Siddiqui YH, Roberts D, Jayaraman PS, Gaston K. PRH/HHEX inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene. 2014;33(49):5592-600; DOI:10.1038/onc.2013.496.10.1038/onc.2013.496
  40. 40. Hämäläinen ER, Jones TA, Sheer D, Taskinen K, Pihlajaniemi T, Kivirikko KI. Molecular cloning of human lysyl oxidase and assignment of the gene to chromosome 5q23.3-31.2. Genomics. 1991;11(3):508-16.10.1016/0888-7543(91)90057-L
  41. 41. Atsawasuwan P, Mochida Y, Katafuchi M, Kaku M, Fong KS, Csiszar K, Yamauchi M. Lysyl Oxidase Binds Transforming Growth Factor-β and Regulates Its Signaling via Amine Oxidase Activity. J Biol Chem. 2008;283(49):34229-40; DOI:10.1074/jbc.M803142200.10.1074/jbc.M803142200
  42. 42. Kasashima H, Yashiro M, Kinoshita H, Fukuoka T, Morisaki T, Masuda G, Sakurai K, Kubo N, Ohira M, Hirakawa K. Lysyl oxidase is associated with the epithelial mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer. 2016;19(2):431-42; DOI:10.1007/s10120-015-0510-3.10.1007/s10120-015-0510-3
  43. 43. Ruiz LA, Báez-Vega PM, Ruiz A, Peterse DP, Monteiro JB, Bracero N, Beauchamp P, Fazleabas AT, Flores I. Dysregulation of Lysyl Oxidase Expression in Lesions and Endometrium of Women With Endometriosis. Reprod Sci. 2015;22(12):1496-508; DOI:10.1177/1933719115585144.10.1177/1933719115585144
  44. 44. Haraguchi Y, Takiguchi M, Amaya Y, Kawamoto S, Matsuda I, Mori M. Molecular cloning and nucleotide sequence of cDNA for human liver arginase. Proc Natl Acad Sci U S A. 1987;84(2):412-5.10.1073/pnas.84.2.412
  45. 45. Wei LH, Wu G, Morris SM Jr, Ignarro LJ. Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation. Proc Natl Acad Sci U S A. 2001;98(16):9260-4; DOI:10.1073/pnas.161294898.10.1073/pnas.161294898
  46. 46. Yu H, Yoo PK, Aguirre CC, Tsoa RW, Kern RM, Grody WW, Cederbaum SD, Iyer RK. Widespread Expression of Arginase I in Mouse Tissues: Biochemical and Physiological Implications. J Histochem Cytochem. 2003;51(9):1151-60; DOI:10.1177/002215540305100905.10.1177/002215540305100905
  47. 47. Dickinson RE, Hryhorskyj L, Tremewan H, Hogg K, Thomson AA, McNeilly AS, Duncan WC. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary. 2010;139(2):395-407; DOI:10.1530/REP-09-0182.10.1530/REP-09-0182
  48. 48. Duncan WC, McDonald SE, Dickinson RE, Shaw JL, Lourenco PC, Wheelhouse N, Lee KF, Critchley HO, Horne AW. Expression of the repulsive SLIT/ROBO pathway in the human endometrium and Fallopian tube. Mol Hum Reprod. 2010;16(12):950-9; DOI:10.1093/molehr/gaq055.10.1093/molehr/gaq055
  49. 49. Strickland P, Shin GC, Plump A, Tessier-Lavigne M, Hinck L. SLIT2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis. Development. 2006;133(5):823-32; DOI:10.1242/dev.02261.10.1242/dev.02261
Language: English
Page range: 195 - 204
Submitted on: Nov 13, 2018
Accepted on: Dec 11, 2018
Published on: Jan 3, 2019
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Katarzyna Stefańska, Agata Chamier-Gliszczyńska, Maurycy Jankowski, Piotr Celichowski, Magdalena Kulus, Magdalena Rojewska, Paweł Antosik, Dorota Bukowska, Małgorzata Bruska, Michał Nowicki, Bartosz Kempisty, Michal Jeseta, Jana Zakova, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.