Have a personal or library account? Click to login
Dysfunction of mitochondria as the basis of Parkinson’s disease Cover

Dysfunction of mitochondria as the basis of Parkinson’s disease

Open Access
|Jan 2019

References

  1. 1. Mhyre T, Boyd J, Hamill R, Maguire-Zeiss K. Parkinson’s disease. Subcell Biochem. 2012;65:389-455; DOI:10.1007/978-94-007-5416-4_16.10.1007/978-94-007-5416-4_16
  2. 2. Kozubski W. Neurologia. Kompendium. PZWL; 2014
  3. 3. Kalia L, Lang A. Parkinson’s disease. Lancet. 2015;386(9996):896-912; DOI: 10.1016/S0140-6736(14)61393-3.10.1016/S0140-6736(14)61393-3
  4. 4. Thenganatt M, Jankovic J. Parkinson Disease Subtypes. JAMA Neurol. 2014;71(4):499-504; DOI:10.1001/jamaneurol.2013.6233.10.1001/jamaneurol.2013.623324514863
  5. 5. Jellinger K. Neuropathology of Sporadic Parkinson’s Disease: Evaluation and Changes of Concepts. Mov Disord. 2012;27(1):8-30; DOI:10.1002/mds.23795.10.1002/mds.2379522081500
  6. 6. Driver J, Logroscino G, Gaziano J, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology. 2009;72(5):432-8; DOI:10.1212/01.wnl.0000341769.50075.bb.10.1212/01.wnl.0000341769.50075.bb267672619188574
  7. 7. Bentea E, Verbruggen L, Massie A. The Proteasome Inhibition Model of Parkinson’s Disease. J Parkinsons Dis. 2017;7(1):31-63; DOI:10.3233/JPD-160921.10.3233/JPD-160921530204527802243
  8. 8. Surmeier D. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018;285(19):3657-3668; DOI:10.1111/febs.14607.10.1111/febs.14607654642330028088
  9. 9. Chung K, Dawson V, Dawson T. New insights into Parkinson’s disease. J Neurol. 2003;250 Suppl 3:III15-24; DOI:10.1007/s00415-003-1304-9.10.1007/s00415-003-1304-914579120
  10. 10. Schapira A. Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ. 2007;14(7):1261-6; DOI:10.1038/sj.cdd.4402160.10.1038/sj.cdd.440216017464321
  11. 11. Bolam J, Pissadaki E. Living on the edge with oo many mouths to feed: why dopamineneurons die. Mov Disord. 2012;27(12):1478-83; DOI:10.1002/mds.25135.10.1002/mds.25135350438923008164
  12. 12. Smidt M, Asbreuk C, Cox J, Chen H, Johnson R, Burbach J. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci. 2000;3(4):337-41; DOI:10.1038/73902.10.1038/73902
  13. 13. Surmeier D, Guzman J, Sanchez-Padilla J, Schumacker P. The role of calcium and mitochondrial oxidant stress in the lossof substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience. 2011;198:221-31; DOI:10.1016/j.neuroscience.2011.08.045.10.1016/j.neuroscience.2011.08.045
  14. 14. Surmeier D, Schumacker P, Guzman J, Ilijic E, Yang B, Zampese E. Calcium and Parkinson’s disease. Biochem Biophys Res Commun. 2017;483(4):1013-1019; DOI:10.1016/j.bbrc.2016.08.168.10.1016/j.bbrc.2016.08.168
  15. 15. Exner N, Lutz A, Haass C, Winklhofer K. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31(14):3038-62; DOI:10.1038emboj.2012.170.10.1038/emboj.2012.170
  16. 16. Pickles S, Vigié P, Youle R. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol. 2018;28(4):R170-R185; DOI:10.1016/j.cub.2018.01.004.10.1016/j.cub.2018.01.004
  17. 17. Yao Z, Wood N. Cell Death Pathways in Parkinson’s Disease: Role of Mitochondria. Antioxid Redox Signal. 2009;11(9):2135-49; DOI: 10.1089/ARS.2009.2624.10.1089/ars.2009.2624
  18. 18. Franco-Iborra S, Vila M, Perier C. The Parkinson Disease Mitochondrial Hypothesis: Where Are We at? Neuroscientist. 2016;22(3):266-77; DOI:10.1177/1073858415574600.10.1177/1073858415574600
  19. 19. Hagberg H, Mallard C, Rousset C, Thornton C. Mitochondria: hub of injury responses in the developing brain. Lancet Neurol. 2014;13(2):217-32; DOI:10.1016/S1474-4422(13)70261-8.10.1016/S1474-4422(13)70261-8
  20. 20. Luo Y, Hoffer A, Hoffer B, Qi X. Mitochondria: A Therapeutic Target for Parkinson’s Disease? Int J Mol Sci. 2015;16(9):20704-30; DOI:10.3390/ijms160920704.10.3390/ijms160920704461322726340618
  21. 21. Bir A, Sen O, Anand S, Khemka VK, Banerjee P, Cappai R, Sahoo A, Chakrabarti S. α-synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson’s disease. J Neurochem. 2014;131(6):868-77; DOI:10.1111/jnc.12966.10.1111/jnc.1296625319443
  22. 22. Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 2012;124(2):153-72; DOI:10.1007/s00401-012-1004-6.10.1007/s00401-012-1004-6
  23. 23. Subramaniam S, Chesselet M. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106-107:17-32; DOI:10.1016/j.pneurobio.2013.04.004.10.1016/j.pneurobio.2013.04.004
  24. 24. Hauser D, Hastings T. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis. 2013;51:35-42; DOI: 10.1016/j.nbd.2012.10.011.10.1016/j.nbd.2012.10.011
  25. 25. Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci. 2010;30(37):12535-44; DOI:10.1523/JNEUROSCI.1920-10.2010.10.1523/JNEUROSCI.1920-10.2010
  26. 26. Dauer W, Przedborski S. Parkinson’s Disease: Mechanisms and Models. Neuron. 2003;39(6):889-909; DOI:10.1016/s0896-6273(03)00568-3.10.1016/S0896-6273(03)00568-3
  27. 27. Henchcliffe C, Beal M. Mitochondrial biology and oxidative stress in Parkinson diseasepathogenesis. Nat Clin Pract Neurol. 2008;4(11):600-9; DOI:10.1038/ncpneuro0924.10.1038/ncpneuro092418978800
  28. 28. Dias V, Junn E, Mouradian M. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-91; DOI:10.3233JPD-130230.10.3233/JPD-130230413531324252804
  29. 29. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013;22(1):11-7; DOI:10.5607/en.2013.22.1.11.10.5607/en.2013.22.1.11362045323585717
  30. 30. Chaturvedi R, Beal M. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008;1147:395-412; DOI:10.1196/annals.1427.027.10.1196/annals.1427.027260564419076459
  31. 31. Lin M, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct 19;443(7113):787-95; DOI:10.1038/nature05292.10.1038/nature0529217051205
  32. 32. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V. α-Synuclein strains cause distinct synucleinopathies after localand systemic administration. Nature. 2015;522(7556):340-4; DOI:10.1038/nature14547.10.1038/nature1454726061766
  33. 33. Sherer T, Richardson J, Testa C, Seo B, Panov A, Yagi T, Matsuno-Yagi A, Miller G, Greenamyre J. Mechanism of oxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem. 2007;100(6):1469-79; DOI:10.1111/j.1471-4159.2006.04333.x.10.1111/j.1471-4159.2006.04333.x866983317241123
  34. 34. Burbach J, Smits S, Smidt M. Transcription factors in the development of midbrain dopamine neurons. Ann N Y Acad Sci. 2003;991:61-8; DOI:10.1111/j.1749-6632.2003.tb07463.x.10.1111/j.1749-6632.2003.tb07463.x12846974
  35. 35. Wallén A, Perlmann T. Transcriptional control of dopamine neuron development. Ann N Y Acad Sci. 2003;991:48-60; DOI:10.1111/j.1749-6632.2003.tb07462.x.10.1111/j.1749-6632.2003.tb07462.x12846973
  36. 36. Park J, Lim C, Seo H, Park C, Zhuo M, Kaang B, Lee K. Pain perception in acute model mice of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mol Pain. 2015;11:28; DOI:10.1186/s12990-015-0026-1.10.1186/s12990-015-0026-1444885425981600
  37. 37. Dreyer S, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson R, Lee B. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19(1):47-50; DOI:10.1038/ng0598-47.10.1038/ng0598-479590287
  38. 38. Lohr K, Masoud S, Salahpour A, Miller G. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci. 2017; 45(1):20-33; DOI:10.1111/ejn.13357.10.1111/ejn.13357520927727520881
  39. 39. Betarbet R, Sherer T, MacKenzie G, Garcia-Osuna M, Panov A, Greenamyre J. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301-6; DOI:10.1038/81834.10.1038/8183411100151
  40. 40. Marey-Semper I, Gelman M, Levi-Strauss M. The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur. J. Neurosci. 1993; 5, 1029–1034; DOI:10.1111/j.1460-9568.1993.tb00955.x.10.1111/j.1460-9568.1993.tb00955.x7904221
  41. 41. Smeyne R, Jackson-Lewis V. The MPTP model of Parkinson’s disease. Brain Res. Mol. Brain Res. 2005; 134, 57–66; DOI: 10.1016/j.molbrainres.2004.09.017.10.1016/j.molbrainres.2004.09.01715790530
  42. 42. Testa C, Sherer T, Greenamyre J. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005;134(1):109-18; DOI:10.1016/j.molbrainres.2004.11.007.10.1016/j.molbrainres.2004.11.00715790535
  43. 43. Jenner P, Olanow C. Understanding cell death in Parkinson’s disease. Ann Neurol. 1998;44(3 Suppl 1):S72-84; DOI:10.1002/ana.410440712.10.1002/ana.4104407129749577
  44. 44. Nunes I, Tovmasian L, Silva R, Burke R, Goff S. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A. 2003;100(7):4245-50; DOI:10.1073/pnas.0230529100.10.1073/pnas.023052910015307812655058
  45. 45. Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3(12):932-42; DOI:10.1038/nrn983.10.1038/nrn98312461550
  46. 46. Mosharov E, Larsen K, Kanter E, Phillips K, Wilson K, Schmitz Y, Krantz D, Kobayashi K, Edwards R, Sulzer D. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218-29; DOI:10.1016/j.neuron.2009.01.033.10.1016/j.neuron.2009.01.033267756019409267
  47. 47. Chinta S, Mallajosyula J, Rane A, Andersen J. Mitochondrial α-synuclein accumulation impairs complex Ifunction in dopaminergic neurons and results in increasedmitophagy in vivo. Neurosci Lett. 2010;486(3):235-9; DOI:10.1016/j.neulet.2010.09.061.10.1016/j.neulet.2010.09.061296767320887775
  48. 48. Devi L, Raghavendran V, Prabhu B, Avadhani N, Anandatheerthavarada H. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283(14):9089-100; DOI:10.1074/jbc.M710012200.10.1074/jbc.M710012200243102118245082
  49. 49. Zuo L, Motherwell M. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene. 2013;532(1):18-23; DOI:10.1016/j.gene.2013.07.08510.1016/j.gene.2013.07.08523954870
  50. 50. Gu Z, Nakamura T, Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol. 2010;41(2-3):55-72; DOI:10.1007/s12035-010-8113-9.10.1007/s12035-010-8113-9458626120333559
  51. 51. Nakamura T, Prikhodko O, Pirie E, Nagar S, Akhtar M, Oh C, McKercher S, Ambasudhan R, Okamoto S, Lipton SA. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis. 2015;84:99-108; DOI:10.1016/j.nbd.2015.03.017.10.1016/j.nbd.2015.03.017457523325796565
  52. 52. Van Muiswinkel F, Steinbusch H, Drukarch B, De Vente J. Identification of NO-producing and -receptive cells in mesencephalic transplants in a rat model of Parkinson’s disease: A study using NADPH-d enzyme- and NOSc/cGMP immunocytochemistry. Ann N Y Acad Sci. 1994;738:289-304; DOI:10.1111/j.1749-6632.1994.tb21815.x.10.1111/j.1749-6632.1994.tb21815.x
  53. 53. De Lau L, Breteler M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525-35; DOI:10.1016/S1474-4422(06)70471-9.10.1016/S1474-4422(06)70471-9
  54. 54. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888; DOI:10.1101/cshperspect.a008888.10.1101/cshperspect.a008888325303322315721
  55. 55. Kieburtz K, Wunderle K. Parkinson’s disease: evidence for environmental risk factors. Mov Disord. 2013;28(1):8-13; DOI:10.1002/mds.25150.10.1002/mds.2515023097348
  56. 56. Li J, Tan L, Yu J. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener. 2014;9:47; DOI:10.1186/1750-1326-9-47.10.1186/1750-1326-9-47424646925391693
  57. 57. Bose A, Beal M. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016;139 Suppl 1:216-231; DOI:10.1111/jnc.13731.10.1111/jnc.1373127546335
  58. 58. Cookson M. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci. 2010;11(12):791-7; DOI:10.1038/nrn2935.10.1038/nrn2935466225621088684
  59. 59. West A, Moore D, Biskup S, Bugayenko A, Smith W, Ross C, Dawson V, Dawson T. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102(46):16842-7; DOI: 10.1073/pnas.0507360102.10.1073/pnas.0507360102128382916269541
  60. 60. Chasapis C, Spyroulias G. RING finger E(3) ubiquitin ligases: structure and drug discovery. Curr Pharm Des. 2009;15(31):3716-31; DOI:10.2174/138161209789271825.10.2174/13816120978927182519925422
  61. 61. Lee J, Nagano Y, Taylor J, Lim K, Yao T. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010;189(4):671-9; DOI:10.1083/jcb.201001039.10.1083/jcb.201001039287290320457763
  62. 62. Morrison K. Parkin mutations and early onset parkinsonism. Brain. 2003;126(Pt 6):1250-1; DOI: 10.1093/brain/awg189.10.1093/brain/awg189
  63. 63. Riess O, Jakes R, Krüger R. Genetic dissection of familial Parkinson’s disease. Mol Med Today. 1998;4(10):438-44; DOI:10.1016/s1357-4310(98)01343-4.10.1016/S1357-4310(98)01343-4
  64. 64. Tan J, Dawson T. Parkin blushed by PINK1. Neuron. 2006;50(4):527-9; DOI:10.1016/j.neuron.2006.05.003.10.1016/j.neuron.2006.05.00316701203
  65. 65. Kazlauskaite A, Muqit M. PINK1 and Parkin—mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’s disease. FEBS J. 2015;282(2):215-23; DOI:10.1111/febs.13127.10.1111/febs.13127436837825345844
  66. 66. Song S, Jang S, Park J, Bang S, Choi S, Kwon K, Zhuang X, Kim E, Chung J. Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and drosophila. J Biol Chem. 2013;288(8):5660-72, DOI:10.1074/jbc.M112.430801.10.1074/jbc.M112.430801358142323303188
  67. 67. Pickrell A, Youle R. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257-73; DOI:10.1016/j.neuron.2014.12.007.10.1016/j.neuron.2014.12.007476499725611507
  68. 68. Bonifati V, Oostra B, Heutink P. Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson’s disease. J Mol Med (Berl). 2004;82(3):163-74; DOI: 10.1007/s00109-003-0512-1.10.1007/s00109-003-0512-114712351
  69. 69. Wang X, Yan M, Fujioka H, Liu J, Wilson-Delfosse A, Chen S, Perry G, Casadesus G, Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21(9):1931-44; DOI:10.1093/hmg/dds003.10.1093/hmg/dds003331520222228096
  70. 70. Bender A, Desplats P, Spencer B, Rockenstein E, Adame A, Elstner M, Laub C, Mueller S, Koob A, Mante M, Pham E, Klopstock T, Masliah E. TOM40 mediates mitochondrial dysfunction induced by alpha-synuclein accumulation in Parkinson’s disease. PLoS One. 2013;8(4):e62277; DOI:10.1371/journal.pone.0062277.10.1371/journal.pone.0062277363391723626796
  71. 71. Oczkowska A, Kozubski W, Dorszewska J. Alpha-synuclein in Parkinson’s disease. Przegl Lek. 2014;71(1):26-32.
  72. 72. Wales P, Pinho R, Lázaro D, Outeiro T. Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration. J Parkinsons Dis. 2013;3(4):415-59; DOI:10.3233/JPD-130216.10.3233/JPD-13021624270242
  73. 73. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399; DOI:10.1101/cshperspect.a009399.10.1101/cshperspect.a009399
  74. 74. Emmanouilidou E, Stefanis L, Vekrellis K. Cell produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging. 2010;31(6):953-68; DOI:10.1016/j.neurobiolaging.2008.07.008.10.1016/j.neurobiolaging.2008.07.008
  75. 75. Xilouri M, Brekk O, Stefanis L. α-Synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol. 2013;47(2):537-51; DOI: 10.1007/s12035-012-8341-2.10.1007/s12035-012-8341-2
  76. 76. Brundin P, Li J, Holton J, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9(10):741-5; DOI:10.1038/nrn2477.10.1038/nrn2477
  77. 77. Martin L, Pan Y, Price A, Sterling W, Copeland N, Jenkins N, Price D, Lee M. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26(1):41-50; DOI:10.1523/JNEUROSCI.4308-05.2006.10.1523/JNEUROSCI.4308-05.2006
  78. 78. Kim C, Lee S. Controlling the mass action of alpha-synuclein in Parkinson’s disease. J Neurochem. 2008;107(2):303-16; DOI:10.1111/j.1471-4159.2008.05612.x.10.1111/j.1471-4159.2008.05612.x
  79. 79. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V. α-Synuclein strains cause distinct synucleinopathies after localand systemic administration. Nature. 2015;522(7556):340-4; DOI:10.1038/nature14547.10.1038/nature14547
  80. 80. Simon H, Saueressig H, Wurst W, Goulding M, O’Leary D. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci. 2001;21(9):3126-34; DOI:10.1523/jneurosci.21-09-03126.2001.10.1523/JNEUROSCI.21-09-03126.2001
  81. 81. Tanner C, Goldman S. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14(2):317-35; DOI:10.1016/s0733-8619(05)70259-0.10.1016/S0733-8619(05)70259-0
  82. 82. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen J, Schöls L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18(2):106-8; DOI:10.1038/ng0298-106.10.1038/ng0298-1069462735
  83. 83. Jin H, Li C. Tanshinone IIA and Cryptotanshinone Prevent Mitochondrial Dysfunction in Hypoxia-Induced H9c2 Cells: Association to Mitochondrial ROS, Intracellular Nitric Oxide, and Calcium Levels. Evid Based Complement Alternat Med. 2013;2013:610694; DOI:10.1155/2013/610694.10.1155/2013/610694360367923533503
  84. 84. Morgante L, Rocca W, Di Rosa A, De Domenico P, Grigoletto F, Meneghini F, Reggio A, Savettieri G, Castiglione M, Patti F. Prevalence of Parkinson’s disease and other types of parkinsonism: A door-to-door survey in three Sicilian municipalities. The Sicilian Neuro-Epidemiologic Study (SNES) Group. Neurology. 1992;42(10):1901-7; DOI:10.1038/ng0298-106.10.1038/ng0298-1069462735
  85. 85. Berthet A, Margolis E, Zhang J, Hsieh I, Zhang J, Hnasko T, Ahmad J, Edwards R, Sesaki H, Huang E, Nakamura K. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34(43):14304-17; DOI:10.1523/JNEUROSCI.0930-14.2014.10.1523/JNEUROSCI.0930-14.2014420555425339743
  86. 86. Mantegazza A, Marks M.Pink light on mitochondria in autoimmunity and Parkinson Disease. Cell Metab. 2016; 24(1): 11–12; DOI:10.1016/j.cmet.2016.06.022.10.1016/j.cmet.2016.06.022499303927411006
  87. 87. Zetterström R, Solomin L, Jansson L, Hoffer B, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science. 1997;276(5310):248-50; DOI:10.1126/science.276.5310.248.10.1126/science.276.5310.2489092472
  88. 88. Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, Van Swieten J, Brice A, Van Duijn C, Oostra B, Meco G, Heutink P. DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003;24(3):159-60; DOI: 10.1007/s10072-003-0108-0.10.1007/s10072-003-0108-014598065
  89. 89. Wang X, Yan M, Fujioka H, Liu J, Wilson-Delfosse A, Chen S, Perry G, Casadesus G, Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21(9):1931-44; DOI:10.1093/hmg/dds003.10.1093/hmg/dds003331520222228096
  90. 90. Yamamoto A, Yue Z. Autophagy and its normal and pathogenic states in the brain. Annu Rev Neurosci. 2014;37:55-78; DOI:10.1146/annurev-neuro-071013-014149.10.1146/annurev-neuro-071013-01414924821313
  91. 91. Fass E, Amar N, Elazar Z. Identification of essential residues for the C-terminal cleavage of the mammalian LC3: A lesson from yeast Atg8. Autophagy. 2007;3(1):48-50; DOI:10.4161/auto.3417.10.4161/auto.341717102583
  92. 92. Wu F, Xu H, Guan J, Hou Y, Gu J, Zhen X, Qin Z. Rotenone impairs autophagic flux and lysosomal functions in Parkinson’s disease. Neuroscience. 2015;284:900-11; DOI:10.1016/j.neuroscience.2014.11.004.10.1016/j.neuroscience.2014.11.00425446361
  93. 93. Narendra D, Youle R. Targeting mitochondrial dysfunction: Role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011;14(10):1929-38; DOI:10.1089/ars.2010.3799.10.1089/ars.2010.3799307849021194381
  94. 94. Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, Krainc D, Klein C. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: Study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem. 2013;288(4):2223-37; DOI:10.1074/jbc.M112.391680.10.1074/jbc.M112.391680355489523212910
  95. 95. Wang X, Petrie T, Liu Y, Liu J, Fujioka H, Zhu X. Parkinson’s disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem. 2012;121(5):830-9; DOI:10.1111/j.1471-4159.2012.07734.x.10.1111/j.1471-4159.2012.07734.x374056022428580
  96. 96. Gómez-Suaga P, Luzón-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman P, Churchill G, Hilfiker S. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012;21(3):511-25; DOI:10.1093/hmg/ddr481.10.1093/hmg/ddr481325901122012985
  97. 97. Bravo-San Pedro J, Niso-Santano M, Gómez-Sánchez R, Pizarro-Estrella E, Aiastui-Pujana A, Gorostidi A, Climent V, López de Maturana R, Sanchez-Pernaute R, López de Munain A, Fuentes J, González-Polo R. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci. 2013;70(1):121-36; DOI:10.1007/s00018-012-1061-y.10.1007/s00018-012-1061-y22773119
  98. 98. Gómez-Suaga P, Hilfiker S. LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy. Autophagy. 2012;8(4):692-3; DOI: 10.4161/auto.19305.10.4161/auto.1930522441017
  99. 99. Orenstein S, Kuo S, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig L, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo A. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013;16(4):394-406; DOI: 10.1038/nn.3350.10.1038/nn.3350360987223455607
Language: English
Page range: 174 - 181
Submitted on: Nov 4, 2018
Accepted on: Nov 26, 2018
Published on: Jan 3, 2019
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Małgorzata Popis, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.