Have a personal or library account? Click to login
Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture – a transcriptomic study Cover

Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture – a transcriptomic study

Open Access
|Jan 2019

References

  1. 1. Özen A, ERTUǦRUL T. Histomorphology of the porcine oviduct. Ankara Üniversitesi Vet Fakültesi Derg. 2013;60:7–13; DOI:10.1501/Vetfak_0000002546.10.1501/Vetfak_0000002546
  2. 2. Killian G. Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim Reprod Sci. 2004;82–83:141–53; DOI:10.1016/j.anireprosci.2004.04.028.10.1016/j.anireprosci.2004.04.028
  3. 3. Chen S, Einspanier R, Schoen J. Long-term culture of primary porcine oviduct epithelial cells: Validation of a comprehensive in vitro model for reproductive science. Theriogenology. 2013;80:862–9; DOI:10.1016/j.theriogenology.2013.07.011.10.1016/j.theriogenology.2013.07.011
  4. 4. Aldarmahi A. Establishment and characterization of female reproductive tract epithelial cell culture. J Microsc Ultrastruct. 2017;5:105; DOI:10.1016/j.jmau.2016.07.004.10.1016/j.jmau.2016.07.004
  5. 5. Jung JG, Park TS, Kim JN, Han BK, Lee SD, Song G, Han JY. Characterization and Application of Oviductal Epithelial Cells In vitro in Gallus domesticus1. Biol Reprod. 2011;85:798–807; DOI:10.1095/biolreprod.111.092023.10.1095/biolreprod.111.092023
  6. 6. Slavík T, Fulka J. Oviduct secretion contributes to the establishment of species specific barrier preventing penetration of oocytes with foreign spermatozoa. Folia Biol (Praha). 1999;45:53–8;
  7. 7. Mugnier S, Kervella M, Douet C, Canepa S, Pascal G, Deleuze S, Duchamp G, Monget P, Goudet G. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved? Reprod Biol Endocrinol. 2009;7:129; DOI:10.1186/1477-7827-7-129.10.1186/1477-7827-7-129
  8. 8. Gervasi MG, Marczylo TH, Lam PM, Rana S, Franchi AM, Konje JC, Perez-Martinez S. Anandamide Levels Fluctuate in the Bovine Oviduct during the Oestrous Cycle. PLoS One. 2013;8:e72521; DOI:10.1371/journal.pone.0072521.10.1371/journal.pone.0072521
  9. 9. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. REPRODUCTION. 2012;144:649–60; DOI:10.1530/REP-12-0279.10.1530/REP-12-0279
  10. 10. Shirley B, Reeder RL. Cyclic changes in the ampulla of the rat oviduct. J Exp Zool. 1996;276:164–73; DOI:10.1002/(SICI)1097-010X(19961001)276:2<;164::AID-JEZ10>3.0.CO;2-K.10.1002/(SICI)1097-010X(19961001)276:2<;164::AID-JEZ10>3.0.CO;2-K
  11. 11. Areekijseree M, Vejaratpimol R. In vivo and in vitro study of porcine oviductal epithelial cells, cumulus oocyte complexes and granulosa cells: A scanning electron microscopy and inverted microscopy study. Micron. 2006;37:707–16; DOI:10.1016/j.micron.2006.03.004.10.1016/j.micron.2006.03.004
  12. 12. Acuña OS, Avilés M, López-Úbeda R, Guillén-Martínez A, Soriano-Úbeda C, Torrecillas A, Coy P, Izquierdo-Rico MJ. Differential gene expression in porcine oviduct during the oestrous cycle. Reprod Fertil Dev. 2017;29:2387–99; DOI:10.1071/RD16457.10.1071/RD16457
  13. 13. Miessen K, Sharbati S, Einspanier R, Schoen J. Modelling the porcine oviduct epithelium: A polarized in vitro system suitable for long-term cultivation. Theriogenology. 2011;76:900–10; DOI:10.1016/j.theriogenology.2011.04.021.10.1016/j.theriogenology.2011.04.021
  14. 14. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75; DOI:10.1093/nar/gkm415.10.1093/nar/gkm415
  15. 15. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300
  16. 16. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005; DOI:10.1093/nar/gki005.10.1093/nar/gki005
  17. 17. Park K, Kim J, Choi C-Y, Bae J, Kim S-H, Kim Y-H, Molecular Cloning and Expression Analysis of Pig Cd90. Anim Biotechnol. 2016;27:133–9; DOI :10.1080/10495398.2015.1129630.10.1080/10495398.2015.1129630
  18. 18. Morris R. Thy-1 in Developing Nervous Tissue (Part 1 of 2). Dev Neurosci. 1985;7:133–46; DOI:10.1159/000112283.10.1159/000112283
  19. 19. Lee W-S, Jain MK, Arkonac BM, Zhang D, Shaw S-Y, Kashiki S, Maemura K, Lee SL, Hollenberg NK, Lee M, Haber E. Thy-1, a Novel Marker for Angiogenesis Upregulated by Inflammatory Cytokines. Circ Res. 1998;82:845–51; DOI:10.1161/01.RES.82.8.845.10.1161/01.RES.82.8.845
  20. 20. Meidtner K, Schwarzenbacher H, Scharfe M, Severitt S, Blöcker H, Fries R. Haplotypes of the porcine peroxisome proliferator-activated receptor delta gene are associated with backfat thickness. BMC Genet. 2009;10:76; DOI:10.1186/1471-2156-10-76.10.1186/1471-2156-10-76
  21. 21. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive Vasculogenesis, Angiogenesis, and Organogenesis Precede Lethality in Mice Lacking All αv Integrins. Cell. 1998;95:507–19; DOI:10.1016/S0092-8674(00)81618-9.10.1016/S0092-8674(00)81618-9
  22. 22. Lacy-Hulbert A, Smith AM, Tissire H, Barry M, Crowley D, Bronson RT, Roes JT, Savill JS, Hynes RO. Ulcerative colitis and autoimmunity induced by loss of myeloid v integrins. Proc Natl Acad Sci. 2007;104:15823–8; DOI:10.1073/pnas.0707421104.10.1073/pnas.0707421104199413517895374
  23. 23. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82; DOI:10.1101/gad.11.1.72.10.1101/gad.11.1.729000051
  24. 24. Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci. 2006;103:5478–83; DOI:10.1073/pnas.0508035103.10.1073/pnas.0508035103141463216567644
  25. 25. Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev. 2005;19:387–96; DOI:10.1101/gad.1279405.10.1101/gad.127940554651615687261
  26. 26. Paz H, Lynch MR, Bogue CW, Gasson JC. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood. 2010;116:1254–62; DOI:10.1182/blood-2009-11-254383.10.1182/blood-2009-11-254383293823620472829
  27. 27. Diaz PS, Solar PA, Juica NE, Orihuela PA, Cardenas H, Christodoulides M, Vargas R, Velasquez LA. Differential expression of extracellular matrix components in the Fallopian tubes throughout the menstrual cycle. Reprod Biol Endocrinol. 2012;10:56; DOI:10.1186/1477-7827-10-56.10.1186/1477-7827-10-56348977822897899
  28. 28. Talbot P, Shur BD, Myles DG. Cell Adhesion and Fertilization: Steps in Oocyte Transport, Sperm-Zona Pellucida Interactions, and Sperm-Egg Fusion1. Biol Reprod. 2003;68:1–9; DOI:10.1095/biolreprod.102.007856.10.1095/biolreprod.102.00785612493688
  29. 29. Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol. 2015;407:195–210; DOI:10.1016/j.ydbio.2015.09.016.10.1016/j.ydbio.2015.09.016531269726434918
  30. 30. Wang J, Karra R, Dickson AL, Poss KD. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol. 2013;382:427–35; DOI:10.1016/j.ydbio.2013.08.012.10.1016/j.ydbio.2013.08.012385276523988577
  31. 31. Lin H, Wang X, Liu G, Fu J, Wang A. Expression of αV and β3 integrin subunits during implantation in pig. Mol Reprod Dev. 2007;74:1379–85; DOI:10.1002/mrd.20732.10.1002/mrd.2073217440962
  32. 32. Lessey BA. Adhesion molecules and implantation. J Reprod Immunol. 2002;55:101–12; DOI:10.1016/S0165-0378(01)00139-5.10.1016/S0165-0378(01)00139-5
  33. 33. Bowen J a, Bazer FW, Burghardt RC. Spatial and Temporal Analyses of Integrin and Muc-1 Expression in Porcine Uterine Epithelium and Trophectoderm in vitro1. Biol Reprod. 1997;56:409–15; DOI:10.1095/biolreprod56.2.409.10.1095/biolreprod56.2.409
  34. 34. Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the αvβ3 Integrin Adversely Affects Implantation in the Mouse1. Biol Reprod. 2000;62:1285–90; DOI:10.1095/biolreprod62.5.1285.10.1095/biolreprod62.5.1285
  35. 35. Lessey BA, Castelbaum AJ, Sawin SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility**Supported by the National Institutes of Health grants HD-29449 and HD-30476 1 (B.A.L.), Bethesa, Maryland.††Presented at the 40th Annual Meeting of the Society of G. Fertil Steril. 1995;63:535–42; DOI:10.1016/S0015-0282(16)57422-6.10.1016/S0015-0282(16)57422-6
  36. 36. Zhang J, Wang J, Gao N, Chen Z, Tian Y, An J. Up-regulated expression of β3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem Biophys Res Commun. 2007;356:763–8; DOI:10.1016/j.bbrc.2007.03.051.10.1016/j.bbrc.2007.03.05117382900
  37. 37. Rajaram RD, Dissard R, Jaquet V, de Seigneux S. Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system. Nephrol Dial Transplant. 2018DOI:10.1093/ndt/gfy161.10.1093/ndt/gfy16129931336
  38. 38. Hakami NY, Ranjan AK, Hardikar AA, Dusting GJ, Peshavariya HM. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells. Front Physiol. 2017;8:1–10; DOI:10.3389/fphys.2017.00150.10.3389/fphys.2017.00150536264528386230
  39. 39. Ponticos M, Abraham D, Alexakis C, Lu Q-L, Black C, Partridge T, Bou-Gharios G. Col1a2 enhancer regulates collagen activity during development and in adult tissue repair. Matrix Biol. 2004;22:619–28; DOI:10.1016/j.matbio.2003.12.002.10.1016/j.matbio.2003.12.00215062855
  40. 40. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28:209–21; DOI:10.1002/humu.20429.10.1002/humu.20429414434917078022
  41. 41. Knisely AS, Richardson A, Abuelo D, Casey S, Singer DB. Lethal osteogenesis imperfecta associated with 46,XY,inv(7)(p13q22) karyotype. J Med Genet. 1988;25:352–5; DOI:10.1136/jmg.25.5.352.10.1136/jmg.25.5.35210504663385745
  42. 42. Sharma-Bhandari A, Park S-H, Kim J-Y, Oh J, Kim Y. Lysyl oxidase modulates the osteoblast differentiation of primary mouse calvaria cells. Int J Mol Med. 2015;36:1664–70; DOI:10.3892/ijmm.2015.2384.10.3892/ijmm.2015.2384
  43. 43. Oxlund H, Sekilde L, Ørtoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84; DOI:10.1016/S8756-3282(96)00283-9.10.1016/S8756-3282(96)00283-9
  44. 44. Bailey AJ, Wotton SF, Sims TJ, Thompson PW. Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res. 1993;29:119–32; DOI:10.3109/03008209309014239.10.3109/030082093090142398403893
  45. 45. Talas U, Dunlop J, Khalaf S, Leigh IM, Kelsell DP. Human Elastase 1: Evidence for Expression in the Skin and the Identification of a Frequent Frameshift Polymorphism. J Invest Dermatol. 2000;114:165–70; DOI:10.1046/j.1523-1747.2000.00825.x.10.1046/j.1523-1747.2000.00825.x10620133
  46. 46. Liu S, Young SM, Varisco BM. Dynamic expression of chymotrypsin-like elastase 1 over the course of murine lung development. Am J Physiol Cell Mol Physiol. 2014;306:L1104–16; DOI:10.1152/ajplung.00126.2013.10.1152/ajplung.00126.2013406000824793170
  47. 47. Petrovic N, Schacke W, Gahagan JR, O’Conor CA, Winnicka B, Conway RE, Mina-Osorio P, Shapiro LH. CD13/APN regulates endothelial invasion and filopodia formation. Blood. 2007;110:142–50; DOI:10.1182/blood-2006-02-002931.10.1182/blood-2006-02-002931189610817363739
  48. 48. Rangel R, Sun Y, Guzman-Rojas L, Ozawa MG, Sun J, Giordano RJ, Van Pelt CS, Tinkey PT, Behringer RR, Sidman RL, Arap W, Pasqualini R. Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci. 2007;104:4588–93; DOI:10.1073/pnas.0611653104.10.1073/pnas.0611653104181546917360568
  49. 49. Angiolillo AL. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med. 1995;182:155–62; DOI:10.1084/jem.182.1.155.10.1084/jem.182.1.15521921087540647
  50. 50. Gouagna LC, Bancone G, Yao F, Yameogo B, Dabiré KR, Costantini C, Simporé J, Ouedraogo JB, Modiano D. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31; DOI:10.1038/ng.554.10.1038/ng.55420305663
  51. 51. Pérez-Mancera PA, Bermejo-Rodríguez C, González-Herrero I, Herranz M, Flores T, Jiménez R, Sánchez-García I. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet. 2007;16:2972–86; DOI:10.1093/hmg/ddm278.10.1093/hmg/ddm27817905753
  52. 52. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66; DOI:10.1038/nrm757.10.1038/nrm75711994736
  53. 53. Narkis G, Ofir R, Landau D, Manor E, Volokita M, Hershkowitz R, Elbedour K, Birk OS. Lethal Contractural Syndrome Type 3 (LCCS3) Is Caused by a Mutation in PIP5K1C, Which Encodes PIPKIγ of the Phophatidylinsitol Pathway. Am J Hum Genet. 2007;81:530–9; DOI:10.1086/520771.10.1086/520771195084017701898
  54. 54. Makinodan M, Rosen KM, Ito S, Corfas G. A Critical Period for Social Experience-Dependent Oligodendrocyte Maturation and Myelination. Science (80- ). 2012;337:1357–60; DOI:10.1126/science.1220845.10.1126/science.1220845416561322984073
  55. 55. Boeckel J-N, Derlet A, Glaser SF, Luczak A, Lucas T, Heumüller AW, Krüger M, Zehendner CM, Kaluza D, Doddaballapur A, Ohtani K, Treguer K, Dimmeler S. JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2016;36:1425–33; DOI:10.1161/ATVBAHA.116.307695.10.1161/ATVBAHA.116.30769527199445
  56. 56. Agger K, Cloos PAC, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4; DOI:10.1038/nature06145.10.1038/nature0614517713478
  57. 57. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E, Roberts TM, Chang HY, Shi Y. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94; DOI:10.1038/nature06192.10.1038/nature0619217851529
  58. 58. Zhang P, Andrianakos R, Yang Y, Liu C, Lu W. Kruppel-like Factor 4 (Klf4) Prevents Embryonic Stem (ES) Cell Differentiation by Regulating Nanog Gene Expression. J Biol Chem. 2010;285:9180–9; DOI:10.1074/jbc.M109.077958.10.1074/jbc.M109.077958283833720071344
  59. 59. Zheng X, Li A, Zhao L, Zhou T, Shen Q, Cui Q, Qin X. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochem Biophys Res Commun. 2013;437:625–31; DOI:10.1016/j.bbrc.2013.07.017.10.1016/j.bbrc.2013.07.01723867820
  60. 60. Tang M, Wang G, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med. 2003;9:1506–12; DOI:10.1038/nm958.10.1038/nm95814608379
  61. 61. Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee M-H, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP, Blumer KJ. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest. 2003;111:445–52; DOI:10.1172/JCI15598.10.1172/JCI1559815191812588882
Language: English
Page range: 163 - 173
Submitted on: Nov 16, 2018
Accepted on: Dec 5, 2018
Published on: Jan 3, 2019
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Agata Chamier-Gliszczyńska, Maciej Brązert, Patrycja Sujka-Kordowska, Małgorzata Popis, Katarzyna Ożegowska, Katarzyna Stefańska, Ievgeniia Kocherova, Piotr Celichowski, Magdalena Kulus, Dorota Bukowska, Leszek Pawelczyk, Małgorzata Bruska, Paweł Antosik, Michał Nowicki, Bartosz Kempisty, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.