Have a personal or library account? Click to login
Nampt (Visfatin) Influence on Proliferative Activity of Normal Rat Adrenocortical Cells and Human Adrenal Corticocarcinoma Nci-H295r Cells Cover

Nampt (Visfatin) Influence on Proliferative Activity of Normal Rat Adrenocortical Cells and Human Adrenal Corticocarcinoma Nci-H295r Cells

Open Access
|Sep 2018

References

  1. 1.Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S. Nampt/ PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6(5):363-75; DOI:10.1016/j. cmet.2007.09.003.10.1016/j.cmet.2007.09.003209869817983582
  2. 2. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115-30; DOI:10.1146/annurev. nutr.28.061807.155443.10.1146/annurev.nutr.28.061807.15544318429699
  3. 3. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010; 31(2):194-223; DOI:10.1210/er.2009-0026.10.1210/er.2009-0026285220920007326
  4. 4. Borradaile NM, Pickering JG. NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des. 2009;15(1):110-7.10.2174/13816120978718574219149606
  5. 5. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14(5):661-73; DOI:10.1016/j.devcel.2008.02.004.10.1016/j.devcel.2008.02.004243146718477450
  6. 6. Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 2009; 105(5):481-91; DOI:10.1161/ CIRCRESAHA.109.203703.10.1161/CIRCRESAHA.109.203703276579019661458
  7. 7. Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase- -1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005;280(52):43121-30; DOI:10.1074/jbc.M506162200.10.1074/jbc.M50616220016207712
  8. 8. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754-63; DOI:10.1074/ jbc.M408388200.10.1074/jbc.M40838820015381699
  9. 9. Rongvaux A, Galli M, Denanglaire S, Van Gool F, Dreze PL, Szpirer C, Bureau F, Andris F, Leo O. Nicotinamide phosphoribosyl transferase/ pre-B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J Immunol. 2008;181(7):4685-95.10.4049/jimmunol.181.7.468518802071
  10. 10. Song EK, Lee YR, Yu HN, Kim UH, Rah SY, Park KH, Shim IK, Lee SJ, Park YM, Chung WG, Kim JS, Han MK. Extracellular NAD is a regulator for FcgammaR-mediated phagocytosis in murine macrophages. Biochem Biophys Res Commun. 2008;367(1):156-61; DOI:10.1016/j bbrc.2007.12.131.10.1016/j.bbrc.2007.12.131
  11. 11. Chen H, Wang S, Zhang H, Nice EC, Huang C. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities. Expert Rev Anticancer Ther. 2016;16(8):827-38; DOI:10.1080/147371 40.2016.1190649.10.1080/14737140.2016.1190649
  12. 12. Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome--a key determinant of cancer cell biology. Nat Rev Cancer. 2012;12(11):741-52; DOI:10.1038/nrc3340.10.1038/nrc334023018234
  13. 13. Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppola D. Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer. 2013;4(11-12):447-56; DOI:10.1177/1947601913507576.10.1177/1947601913507576387766524386506
  14. 14. Nergiz Avcioglu S, Altinkaya SO, Kucuk M, Yuksel H, Omurlu IK, Yanik S. Visfatin concentrations in patients with endometrial cancer. Gynecol Endocrinol. 2015;31(3):202-7; DOI:10.3109/09513590.2014.975687.10.3109/09513590.2014.97568725377860
  15. 15. Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, Hu H, Chen X, Zhou HM, Huang X, Yang K, Zhu Q, Wang X, Yi J, Zhu L, Qian X, Chen L, Tang Y, Loscalzo J, and Yang Y, SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metab. 2015;21(5):777-89; DOI:10.1016/j.cmet.2015.04.009.10.1016/j.cmet.2015.04.009442757125955212
  16. 16. Bi TQ, Che XM. Nampt/PBEF/visfatin and cancer. Cancer Biol Ther. 2010;10(2):119-25; DOI:10.4161/cbt.10.2.12581.10.4161/cbt.10.2.1258120647743
  17. 17. Shackelford RE, Bui MM, Coppola D, Hakam A. Over-expression of nicotinamide phosphoribosyltransferase in ovarian cancers. Int J Clin Exp Pathol. 2010;3(5):522-7.
  18. 18. Buldak RJ, Buldak L, Polaniak R, Kukla M, Birkner E, Kubina R, Kabala- Dzik A, Dulawa-Buldak A, Zwirska-Korczala K. Visfatin affects redox adaptative responses and proliferation in Me45 human malignant melanoma cells: an in vitro study. Oncol Rep. 2013;29(2):771-8; DOI:10.3892/or.2012.2175.10.3892/or.2012.217523232726
  19. 19. Olesen UH, Petersen JG, Garten A, Kiess W, Yoshino J, Imai S, Christensen MK, Fristrup P, Thougaard AV, Bjorkling F, Jensen PB, Nielsen SJ, Sehested M. Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase. BMC Cancer. 2010;10:677; DOI:10.1186/1471-2407-10-677.10.1186/1471-2407-10-677301921221144000
  20. 20. Guo J, Lam LT, Longenecker KL, Bui MH, Idler KB, Glaser KB, Wilsbacher JL, Tse C, Pappano WN, Huang TH. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD(+) biosynthesis pathway and NAMPT mutation. Biochem Biophys Res Commun. 2017;491(3):681-686; DOI:10.1016/j.bbrc.2017.07.143.10.1016/j.bbrc.2017.07.14328756225
  21. 21. Carbone F, Liberale L, Bonaventura A, Vecchie A, Casula M, Cea M, Monacelli F, Caffa I, Bruzzone S, Montecucco F, Nencioni A. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr Physiol. 2017;7(2):603-621; DOI:10.1002/cphy.c160029.10.1002/cphy.c16002928333382
  22. 22. Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol. 2015;11(9):535-46; DOI:10.1038/nrendo.2015.117.10.1038/nrendo.2015.11726215259
  23. 23. Gholinejad Z, Kheiripour N, Nourbakhsh M, Ilbeigi D, Behroozfar K, Hesari Z, Golestani A, Shabani M, Einollahi N. Extracellular NAMPT/ Visfatin induces proliferation through ERK1/2 and AKT and inhibits apoptosis in breast cancer cells. Peptides. 2017;92:9-15; DOI:10.1016/j. peptides.2017.04.007.10.1016/j.peptides.2017.04.00728442350
  24. 24. Behrouzfar K, Alaee M, Nourbakhsh M, Gholinejad Z, Golestani A. Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells. Cell Biochem Funct.2017;35(6):327-333; DOI:10.1002/cbf.3279.10.1002/cbf.327928845527
  25. 25. Patel ST, Mistry T, Brown JE, Digby JE, Adya R, Desai KM, Randeva HS. A novel role for the adipokine visfatin/pre-B cell colony-enhancing factor 1 in prostate carcinogenesis. Peptides. 2010;31(1):51-7, DOI:10.1016/j. peptides.2009.10.001.10.1016/j.peptides.2009.10.00119819277
  26. 26. Ninomiya S, Shimizu M, Imai K, Takai K, Shiraki M, Hara T, Tsurumi H, Ishizaki S, Moriwaki H. Possible role of visfatin in hepatoma progression and the effects of branched-chain amino acids on visfatin-induced proliferation in human hepatoma cells. Cancer Prev Res (Phila). 2011;4(12):2092-100; DOI:10.1158/1940-6207.CAPR-11-0340.10.1158/1940-6207.CAPR-11-034021952585
  27. 27. Mohammadi M, Zarghami N, Hedayati M, Ghaemmaghami S, Yamchi RM, Mohaddes M. Visfatin effects on telomerase gene expression in AGS gastric cancer cell line. Indian J Cancer. 2015;52(1):32-5; DOI:10.4103/0019-509X.175567.10.4103/0019-509X.17556726837965
  28. 28. Wang G, Tian W, Liu Y, Ju Y, Shen Y, Zhao S, Zhang B, Li Y. Visfatin Triggers the Cell Motility of Non-Small Cell Lung Cancer via Up-Regulation of Matrix Metalloproteinases. Basic Clin Pharmacol Toxicol. 2016;119(6):548- 554; DOI:10.1111/bcpt.12623.10.1111/bcpt.1262327224551
  29. 29. Reverchon M, Rame C, Bunel A, Chen W, Froment P, Dupont J. VISFATIN (NAMPT) Improves In Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling Through SIRT1 in Bovine Granulosa Cells. Biol Reprod. 2016;94(3):54; DOI:10.1095/biolreprod.115.134650.10.1095/biolreprod.115.13465026792944
  30. 30. Diot M, Reverchon M, Rame C, Baumard Y, Dupont J. Expression and effect of NAMPT (visfatin) on progesterone secretion in hen granulosa cells. Reproduction. 2015;150(1):53-63; DOI:10.1530/REP-15-0021.10.1530/REP-15-002125918435
  31. 31. Diot M, Reverchon M, Rame C, Froment P, Brillard JP, Briere S, Leveque G, Guillaume D, Dupont J. Expression of adiponectin, chemerin and visfatin in plasma and different tissues during a laying season in turkeys. Reprod Biol Endocrinol. 2015;13:81; DOI:10.1186/s12958-015-0081-5.10.1186/s12958-015-0081-5452134826228641
  32. 32. Ocon-Grove OM, Krzysik-Walker SM, Maddineni SR, Hendricks GL 3rd, Ramachandran R. NAMPT (visfatin) in the chicken testis: influence of sexual maturation on cellular localization, plasma levels and gene and protein expression. Reproduction. 2010;139(1):217-26; DOI:10.1530/REP-08-0377.10.1530/REP-08-037719736255
  33. 33. Celichowski P, Jopek K, Milecka P, Szyszka M, Tyczewska M, Malendowicz LK, Ruciński M. Nicotinamide phosphoribosyltransferase (Nampt)and the hypothalamic-pituitary-adrenal axis of the rat. Mol Med Rep.2018;17(4):6163-6173; DOI:10.3892/mmr.2018.8569.10.3892/mmr.2018.856929436637
  34. 34. Trejter M, Hochol A, Tyczewska M, Ziolkowska A, Jopek K, Szyszka M,MalendowiczLK, Rucinski M. Visinin-like peptide 1 in adrenal gland of the rat. Gene expression and its hormonal control. Peptides. 2015;63:22-9; DOI:10.1016/j.peptides.2014.10.017.10.1016/j.peptides.2014.10.01725451331
  35. 35. Ziolkowska A, Rucinski M, Tyczewska M, Malendowicz LK. Orexin B inhibits proliferation and stimulates specialized function of cultured rat calvarial osteoblast-like cells. Int J Mol Med. 2008;22(6):749-55.
  36. 36. Rucinski M, Ziolkowska A, Szyszka M, Hochol A, Malendowicz LK. Evidence suggesting that ghrelin O-acyl transferase inhibitor acts at the hypothalamus to inhibit hypothalamo-pituitary-adrenocortical axis function in the rat. Peptides. 2012; 35(2):149-59; DOI:10.1016/j. peptides.2012.04.007.10.1016/j.peptides.2012.04.00722543218
  37. 37. Fazeli MS, Dashti H, Akbarzadeh S, Assadi M, Aminian A, Keramati MR, Nabipour I. Circulating levels of novel adipocytokines in patients with colorectal cancer. Cytokine. 2013;62(1):81-5; DOI:10.1016/j. cyto.2013.02.012.10.1016/j.cyto.2013.02.01223474107
  38. 38. Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, Katai H, Kato K, Hamaguchi T, Shimada Y. Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol. 2009;44(7):685-90; DOI:10.1007/s00535-009-0063-5.10.1007/s00535-009-0063-519430715
  39. 39. Yu-Duan T, Chao-Ping W, Chih-Yu C, Li-Wen L, Tsun-Mei L, Chia-Chang H, Fu-Mei C, Hsien-Chang L, Hsia-Fen H, Yau-Jiunn L, Jer-Yiing H. Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in male oral squamous cell carcinoma patients. Med Oral Patol Oral Cir Bucal. 2013;18(2):e180-6.10.4317/medoral.18574361386723229270
  40. 40. Talavera-Urquijo E, Rodriguez-Navarro S, Beisani M, Salcedo-Allende MT, Chakkur A, Arus-Aviles M, Cremades M, Augustin S, Martell M, Balibrea JM. Morphofunctional Changes After Sleeve Gastrectomy and Very Low Calorie Diet in an Animal Model of Non-Alcoholic Fatty Liver Disease Obes Surg. 2018;28(1):142-151; DOI:10.1007/s11695-017-2805-4.10.1007/s11695-017-2805-428710554
  41. 41. Reddy PS, Umesh S, Thota B, Tandon A, Pandey P, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Rao MR, Kondaiah P, Somasundaram K. PBEF1/NAmPRTase/Visfatin: a potential malignant astrocytoma/gliobastoma serum marker with prognostic value. Cancer Biol Ther. 2008;7(5):663-8.10.4161/cbt.7.5.566318728403
  42. 42. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, Mastracci L, Boero S, Montecucco F, Sociali G, Lasiglie D, Damonte P, Grozio A, Mannino E, Poggi A, D’Agostino VG, Monacelli F, Provenzani A, Odetti P, Ballestrero A, Bruzzone S, Nencioni A. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289(49):34189-204; DOI:10.1074/jbc.M114.594721.10.1074/jbc.M114.594721425635125331943
  43. 43. Tian W, Zhu Y, Wang Y, Teng F, Zhang H, Liu G, Ma X, Sun D, Rohan T, Xue F. Visfatin, a potential biomarker and prognostic factor for endometrial cancer. Gynecol Oncol. 2013;129(3):505-12; DOI:10.1016/j. ygyno.2013.02.022.10.1016/j.ygyno.2013.02.02223438672
  44. 44. Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 2003;63(21):7436-42.
  45. 45. Montecucco F, Cea M, Bauer I, Soncini D, Caffa I, Lasiglie D, Nahimana A, Uccelli A, Bruzzone S, Nencioni A. Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors as therapeutics: rationales, controversies, clinical experience. Curr Drug Targets. 2013;14(6):637-43.10.2174/138945011131406000323531116
  46. 46. Ramachandran J, Suyama AT. Inhibition of replication of normal adrenocortical cells in culture by adrenocorticotropin. Proc Natl Acad Sci U S A. 1975;72(1):113-7.10.1073/pnas.72.1.113432251164010
  47. 47. Rybak SM, Ramachandran J. Primary culture of normal rat adrenocortical cells. I. Culture conditions for optimal growth and function. In Vitro.1981;17(7):599-604.10.1007/BF02618458
  48. 48. Parmar J, Key RE, Rainey WE. Development of an adrenocorticotropin- responsive human adrenocortical carcinoma cell line. J Clin Endocrinol Metab. 2008;93(11):4542-6; DOI:10.1210/jc.2008-0903.10.1210/jc.2008-0903258257218713819
  49. 49. Rainey WE, Saner K, Schimmer BP. Adrenocortical cell lines. Mol Cell Endocrinol. 2004;228(1-2):23-38; DOI:10.1016/j.mce.2003.12.020.10.1016/j.mce.2003.12.02015541570
  50. 50. Cea M, Cagnetta A, Fulciniti M, Tai YT, Hideshima T, Chauhan D, Roccaro A, Sacco A, Calimeri T, Cottini F, Jakubikova J, Kong SY, Patrone F, Nencioni A, Gobbi M, Richardson P, Munshi N, Anderson KC. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood. 2012;120(17):3519-29; DOI:10.1182/blood-2012-03-416776.10.1182/blood-2012-03-416776348286222955917
Language: English
Page range: 33 - 38
Submitted on: Apr 12, 2018
Accepted on: Apr 6, 2018
Published on: Sep 26, 2018
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Piotr Celichowski, Karol Jopek, Marta Szyszka, Paulina Milecka, Ludwik K. Malendowicz, Marianna Tyczewska, Marcin Ruciński, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.