Have a personal or library account? Click to login
Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach Cover

Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach

Open Access
|Jan 2018

References

  1. 1. Kranc, W. et al., “The origin, in vitro differentiation, and stemness specificity of progenitor cells.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 2, pp. 365-369, 2017.
  2. 2. Groth, C. G., “The potential advantages of transplanting organs from pig to man: A transplant Surgeon’s view.,” Indian J. Urol., vol. 23, no. 3, pp. 305-9, Jul. 2007.10.4103/0970-1591.33729272161119718335
  3. 3. Denner, J., “Xenotransplantation-Progress and Problems: A Review,” J. Transplant. Technol. Res., vol. 4, no. 2, Jul. 2014.10.4172/2161-0991.1000133
  4. 4. Kranc, W. et al., “Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 1, pp. 1-8, 2017.
  5. 5. Kempisty, B. et al., “Association between progesterone and estradiol-17beta treatment and protein expression of pgr and PGRMC1 in porcine luminal epithelial cells: a real-time cell proliferation approach.,” J. Biol. Regul. Homeost. Agents, vol. 29, no. 1, pp. 39-50.
  6. 6. Bukowska, D. et al., “Differential expression of epidermal growth factor and transforming growth factor beta isoforms in dog endometrium during different periods of the estrus cycle,” Pol. J. Vet. Sci., vol. 14, no. 2, pp. 259-264, Jan. 2011.10.2478/v10181-011-0039-221721411
  7. 7. Ciesiółka, S. et al., “Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation – a primary cell culture approach.,” J. Biol. Regul. Homeost. Agents, vol. 30, no. 3, pp. 693-702.
  8. 8. Huang, D. W. et al., “DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists.,” Nucleic Acids Res., vol. 35, no. Web Server issue, pp. W169-75, Jul. 2007.10.1093/nar/gkm415193316917576678
  9. 9. Luo, W. and Brouwer, C., “Pathview: an R/Bioconductor package for pathway-based data integration and visualization,” Bioinformatics, vol. 29, no. 14, pp. 1830-1831, Jul. 2013.10.1093/bioinformatics/btt285370225623740750
  10. 10. von Mering, C. et al., “STRING: known and predicted protein-protein associations, integrated and transferred across organisms,” Nucleic Acids Res., vol. 33, no. Database issue, pp. D433-D437, Dec. 2005.10.1093/nar/gki00553995915608232
  11. 11. Pectasides, D., Pectasides, E., and Economopoulos, T., “Fallopian tube carcinoma: a review.,” Oncologist, vol. 11, no. 8, pp. 902-12, Sep. 2006.10.1634/theoncologist.11-8-90216951394
  12. 12. Chen, S., Einspanier, R., and Schoen, J., “Long-term culture of primary porcine oviduct epithelial cells: Validation of a comprehensive invitro model for reproductive science,” Theriogenology, 2013.10.1016/j.theriogenology.2013.07.01123973051
  13. 13. Hunter, R. H. F., “Oviduct function in pigs, with particular reference to the pathological condition of polyspermy,” Mol. Reprod. Dev., vol. 29, no. 4, pp. 385-391, Aug. 1991.10.1002/mrd.10802904111888518
  14. 14. Jansen, R. P. S., Anderson, J. C., and Sutherland, P. D., “Nonoperative Embryo Transfer to the Fallopian Tube,” N. Engl. J. Med., vol. 319, no. 5, pp. 288-291, Aug. 1988.10.1056/NEJM1988080431905073393184
  15. 15. Murray, S. C. and Smith, T. T., “Sperm interaction with fallopian tube apical membrane enhances sperm motility and delays capacitation,” Fertil. Steril., vol. 68, no. 2, pp. 351-357, Aug. 1997.10.1016/S0015-0282(97)81528-2
  16. 16. Joshi, M. S., “Isolation, cell culture, and characterization of oviduct epithelial cells of the cow,” Microsc. Res. Tech., vol. 31, no. 6, pp. 507-518, Aug. 1995.10.1002/jemt.1070310607
  17. 17. Joshi, M. S., “Isolation, cell culture and immunocytochemical characterization of oviduct epithelial cells of the cow.,” J. Reprod. Fertil., vol. 83, no. 1, pp. 249-61, May 1988.10.1530/jrf.0.0830249
  18. 18. Walter, I., “Culture of bovine oviduct epithelial cells (BOEC),” Anat. Rec., vol. 243, no. 3, pp. 347-356, Nov. 1995.10.1002/ar.1092430309
  19. 19. Aldarmahi, A., “Establishment and characterization of female reproductive tract epithelial cell culture,” J. Microsc. Ultrastruct., vol. 5, no. 2, pp. 105-110, Jun. 2017.10.1016/j.jmau.2016.07.004
  20. 20. Rottmayer, R. et al., “A bovine oviduct epithelial cell suspension culture system suitable for studying embryo-maternal interactions: morphological and functional characterization.,” Reproduction, vol. 132, no. 4, pp. 637-48, Oct. 2006.10.1530/rep.1.01136
  21. 21. Leese, H. J., Tay, J. I., Reischl, J., and Downing, S. J., “Formation of Fallopian tubal fluid: role of a neglected epithelium.,” Reproduction, vol. 121, no. 3, pp. 339-46, Mar. 2001.10.1530/rep.0.1210339
  22. 22. Abe, H. and Oikawa, T., “Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases,” Anat. Rec., vol. 235, no. 3, pp. 399-410, Mar. 1993.10.1002/ar.1092350309
  23. 23. Kress, A. and Morson, G., “Changes in the oviducal epithelium during the estrous cycle in the marsupial Monodelphis domestica.,” J. Anat., vol. 211, no. 4, pp. 503-17, Oct. 2007.10.1111/j.1469-7580.2007.00794.x
  24. 24. Huntar, R. H., “Function and malfunction of the Fallopian tubes in relation to gametes, embryos and hormones.,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 7, no. 4, pp. 267-83, 1977.10.1016/0028-2243(77)90081-8
  25. 25. Kossowska-Tomaszczuk, K. et al., “The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles,” Stem Cells, vol. 27, no. 1, pp. 210-219, Jan. 2009.10.1634/stemcells.2008-0233
  26. 26. Abe, H. and Hoshi, H., “Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology.,” Cytotechnology, vol. 23, no. 1-3, pp. 171-83, Jan. 1997.10.1023/A:1007929826186
  27. 27. McGivan, J. D. and Pastor-Anglada, M., “Regulatory and molecular aspects of mammalian amino acid transport.,” Biochem. J., vol. 299 (Pt 2), no. Pt 2, pp. 321-34, Apr. 1994.10.1042/bj2990321
  28. 28. Finkelstein, J. D., Martin, J. J., and Harris, B. J., “Methionine metabolism in mammals. The methionine-sparing effect of cystine.,” J. Biol. Chem., vol. 263, no. 24, pp. 11750-4, Aug. 1988.10.1016/S0021-9258(18)37847-5
  29. 29. Stadtman, E. R., Van Remmen, H., Richardson, A., Wehr, N. B., and Levine, R. L., “Methionine oxidation and aging,” Biochim. Biophys. Acta – Proteins Proteomics, vol. 1703, no. 2, pp. 135-140, Jan. 2005.10.1016/j.bbapap.2004.08.010
  30. 30. Zhang, S., Zeng, X., Ren, M., Mao, X., and Qiao, S., “Novel metabolic and physiological functions of branched chain amino acids: a review.,” J. Anim. Sci. Biotechnol., vol. 8, p. 10, 2017.10.1186/s40104-016-0139-z
  31. 31. Wolfe, R. R., “Branched-chain amino acids and muscle protein synthesis in humans: myth or reality?,” J. Int. Soc. Sports Nutr., vol. 14, p. 30, 2017.10.1186/s12970-017-0184-9
  32. 32. Abe, H. et al., “Cloning and sequence analysis of a full length cDNA encoding human mitochodrial 3-oxoacyl-CoA thiolase,” Biochim. Biophys. Acta – Gene Struct. Expr., vol. 1216, no. 2, pp. 304-306, Nov. 1993.10.1016/0167-4781(93)90160-F
  33. 33. Harris, R. A. et al., “Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease.,” Adv. Enzyme Regul., vol. 30, pp. 245-63, 1990.10.1016/0065-2571(90)90021-S
  34. 34. Wynn, R. M. et al., “Molecular Mechanism for Regulation of the Human Mitochondrial Branched-Chain α-Ketoacid Dehydrogenase Complex by Phosphorylation,” Structure, vol. 12, no. 12, pp. 2185-2196, Dec. 2004.10.1016/j.str.2004.09.013
  35. 35. Shafqat, N. et al., “A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency,” J. Inherit. Metab. Dis., vol. 36, no. 6, pp. 983-987, Nov. 2013.10.1007/s10545-013-9589-z382552423420214
  36. 36. Cotter, D. G., Schugar, R. C., and Crawford, P. A., “Ketone body metabolism and cardiovascular disease.,” Am. J. Physiol. Heart Circ. Physiol., vol. 304, no. 8, pp. H1060-76, Apr. 2013.10.1152/ajpheart.00646.2012362590423396451
  37. 37. Fukao, T. et al., “Succinyl-CoA:3-Ketoacid CoA Transferase (SCOT): Cloning of the Human SCOT Gene, Tertiary Structural Modeling of the Human SCOT Monomer, and Characterization of Three Pathogenic Mutations,” Genomics, vol. 68, no. 2, pp. 144-151, Sep. 2000.10.1006/geno.2000.628210964512
  38. 38. Williamson, D. H., Bates, M. W., Page, M. A., and Krebs, H. A., “Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues.,” Biochem. J., vol. 121, no. 1, pp. 41-7, Jan. 1971.10.1042/bj121004111764845165621
  39. 39. Tanaka, H., Kohroki, J., Iguchi, N., Onishi, M., and Nishimune, Y., “Cloning and characterization of a human orthologue of testis-specific succinyl CoA: 3-oxo acid CoA transferase (Scot-t) cDNA,” Mol. Hum. Reprod., vol. 8, no. 1, pp. 16-23, Jan. 2002.10.1093/molehr/8.1.16
  40. 40. Matsubara, Y. et al., “Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family.,” J. Biol. Chem., vol. 264, no. 27, pp. 16321-31, Sep. 1989.10.1016/S0021-9258(18)71624-4
  41. 41. Bixel, M. G., Shimomura, Y., Hutson, S. M., and Hamprecht, B., “Distribution of Key Enzymes of Branched-chain Amino Acid Metabolism in Glial and Neuronal Cells in Culture,” vol. 49, no. 3, pp. 407-418, 2001.10.1177/002215540104900314
  42. 42. Chen, C.-H., Budas, G. R., Churchill, E. N., Disatnik, M.-H., Hurley, T. D., and Mochly-Rosen, D., “Activation of Aldehyde Dehydrogenase-2 Reduces Ischemic Damage to the Heart,” Science (80-. )., vol. 321, no. 5895, pp. 1493-1495, Sep. 2008.10.1126/science.1158554
  43. 43. Kedishvili, N. Y., Popov, K. M., Rougraff, P. M., Zhao, Y., Crabb, D. W., and Harris, R. A., “CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member of the aldehyde dehydrogenase superfamily: cDNA cloning, evolutionary relationships, and tissue distribution,” J. Biol. Chem., vol. 267, no. 27, pp. 19724-19729, 1992.10.1016/S0021-9258(18)41835-2
  44. 44. Allahverdiyev, M., A. et al., “Aldehyde Dehydrogenase: Cancer and Stem Cells,” in Dehydrogenases, InTech, 2012.
  45. 45. Ohgami, M., Takahashi, N., Yamasaki, M., and Fukui, T., “Expression of acetoacetyl-CoA synthetase, a novel cytosolic ketone body-utilizing enzyme, in human brain.,” Biochem. Pharmacol., vol. 65, no. 6, pp. 989-94, Mar. 2003.10.1016/S0006-2952(02)01656-8
  46. 46. Minois, N., “Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines – a mini-review.,” Gerontology, vol. 60, no. 4, pp. 319-26, 2014.10.1159/00035674824481223
  47. 47. Eisenberg, T. et al., “Induction of autophagy by spermidine promotes longevity,” Nat. Cell Biol., vol. 11, no. 11, pp. 1305-1314, Nov. 2009.10.1038/ncb1975
  48. 48. Zhang, Y. et al., “Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation,” Front. Mol. Neurosci., vol. 9, p. 79, Aug. 2016.10.3389/fnmol.2016.00079500540727630541
  49. 49. Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L., and Khavari, P. A., “DNMT1 maintains progenitor function in self-renewing somatic tissue,” Nature, vol. 463, no. 7280, pp. 563-567, Jan. 2010.10.1038/nature08683
  50. 50. PAN, G. J., CHANG, Z. Y., SCHÖLER, H. R., and PEI, D., “Stem cell pluripotency and transcription factor Oct4,” Cell Res., vol. 12, no. 5-6, pp. 321-329, Dec. 2002.10.1038/sj.cr.729013412528890
  51. 51. Shi, G. and Jin, Y., “Role of Oct4 in maintaining and regaining stem cell pluripotency,” Stem Cell Res. Ther., vol. 1, no. 5, p. 39, Dec. 2010.10.1186/scrt39302544121156086
  52. 52. Pan, G. and Thomson, J. A., “Nanog and transcriptional networks in embryonic stem cell pluripotency,” Cell Res., vol. 17, no. 1, pp. 42-49, Jan. 2007.10.1038/sj.cr.731012517211451
  53. 53. Schwarz, B. A., Bar-Nur, O., Silva, J. C. R., and Hochedlinger, K., “Nanog Is Dispensable for the Generation of Induced Pluripotent Stem Cells,” Curr. Biol., vol. 24, no. 3, pp. 347-350, Feb. 2014.10.1016/j.cub.2013.12.050400702124461999
Language: English
Page range: 18 - 26
Submitted on: Nov 14, 2017
Accepted on: Dec 30, 2017
Published on: Jan 31, 2018
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Wiesława Kranc, Maurycy Jankowski, Joanna Budna, Piotr Celichowski, Ronza Khozmi, Artur Bryja, Sylwia Borys, Marta Dyszkiewicz-Konwińska, Michal Jeseta, Magdalena Magas, Dorota Bukowska, Paweł Antosik, Klaus P. Brüssow, Małgorzata Bruska, Michał Nowicki, Maciej Zabel, Bartosz Kempisty, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.