Have a personal or library account? Click to login
Participation of Membrane Nanotubes in Intercellular Communication Cover

Participation of Membrane Nanotubes in Intercellular Communication

Open Access
|Oct 2014

References

  1. [1] Abel M, Riese SR, Schlicker O, Bukoreshtliev N, Gerdes H, Spatz JP, Rustom A. Microstructured platforms to study nanotube-mediated long-distance cell-to-cell connections. Biointerphases 2011; 6: 22-31.10.1116/1.356741621428692
  2. [2] Abounit S, Zurzolo Ch. Wiring through tunneling nanotubes -from electrical signals to organelle transfer. J Cell Sci 2012; 125: 1089-1098.10.1242/jcs.08327922399801
  3. [3] Aguzzi A., Calella AM. Pr ions: Protein aggregation and infectious diseases. Physiol Rev 2009; 89: 1105-1152.10.1152/physrev.00006.200919789378
  4. [4] Arkwright PD, Luchetti F, Tour J, Roberts CH, Ayub R, Morales AP, Rodriguez J, Gilmore A, Canonico B, Papa S, Esposti MD. Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 2010; 20:72-88.10.1038/cr.2009.112282270419770844
  5. [5] Baluska F, Hlavacka A, Volkmann D, Menzel D. Getting connected: actin-based cell-to-cell channels in plants and animals. Trends Cell Biol 2004; 14: 404-408.10.1016/j.tcb.2004.07.00115308205
  6. [6] Belting M, Wittrup A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 2008; 183: 1187-1191.10.1083/jcb.200810038260696519103810
  7. [7] Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Mol Cell. Biol 2010: 11: 301-307.10.1038/nrm2873289247920308987
  8. [8] Bukoreshtliev NV, Wang X, Hodneland E, Gurke S, Barroso J, Gerde HH. Selective block of tunneling nanotube (TNTS) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 2009; 583: 1481-1488.10.1016/j.febslet.2009.03.06519345217
  9. [9] Chauveau A, Aucher A, Eissmann PH, Vivier E, Davis D. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. PNAS 2010; 107: 5545-5550.10.1073/pnas.0910074107285181120212116
  10. [10] Chen P, Hubner W, Spinelli MA, Chen BK. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 2007; 81: 12582-12595.10.1128/JVI.00381-07216900717728240
  11. [11] Chinnery HR, Pearlman E, Mcmenamin PG. Cutting edge: Membrane nanotubes in vivo: a feature of MHC Class II+ cells in the mouse cornea. J Immunol 2008; 180: 5779-5783.10.4049/jimmunol.180.9.5779339217918424694
  12. [12] Cselenyak A, Pankkotai E, Horvath E, Kiss L, Lacza Z. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 2010; 11: 29.10.1186/1471-2121-11-29286933320406471
  13. [13] Daubeuf S, Aucher A, Bordier Ch, Salles A, Serre L, Gaibelet G, Faye J-Ch, Favre G, Joly E, Hudrisier D. Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis. PLoS ONE 2010; 5: e8716.10.1371/journal.pone.0008716280683520090930
  14. [14] Domhan S, Ma L, Tai A, Anaya Z, Beheshti A, Zeier M, Hlatky L, Abdollah I. Intercellular communication by exchange of cytoplasmic material via tunneling nanotube like structures in primary human renal epithelial cells. PLoS ONE 2011; 6: e21283 10.1371/journal.pone.0021283312449321738629
  15. [15] Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144: 590-600.10.1016/j.cell.2011.01.01521335240
  16. [16] Eugenin EA, Gaskill PJ, Berman JW. Tunneling nanotubes (TNTS) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 2009; 254: 142-148.10.1016/j.cellimm.2008.08.005270134518835599
  17. [17] Gerdes HH, Bukoreshtliev NV, Barroso JF. Tunneling nanotubes: A new route for the exchange of components between animal cells. FEBS Lett 2007; 581: 2194-2201.10.1016/j.febslet.2007.03.07117433307
  18. [18] Goligorsky MS, Chen J, Patschan S. Stress-induced premature senescence of endothelial cells - a perilous state between recovery and point of no-return. Curr Opin Hematol 2009; 16: 215-219.10.1097/MOH.0b013e32832a07bd19318942
  19. [19] Gordon-Alonso M, Veiga E, Sanchez-Madrid F. Actin dynamics at the immunological synapse. Cell Health Cytoskel 2010; 2: 33-47.
  20. [20] Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, De Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C. Prions hijack tunneling nanotubes for intercellular spread. Nat Cell Biol 2009; 11: 328-336.10.1038/ncb184119198598
  21. [21] Guescini M, Leo G, Genedani S, Carone S, Pederzoli F, Ciruela F, Guidolin D, Stocchi V, Mantuano M, Borroto-Escuela Do, Fuxe K, Agnati LF. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp Cell Res 2012; 318: 603-613.10.1016/j.yexcr.2012.01.00522266577
  22. [22] Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett Cc, Yeaman Ch, Ohno H. M-Sec promotes membrane nanotube formation by interacting with RaI and the exocyst complex. Nat Cell Biol 2009; 11: 1427-1432.10.1038/ncb199019935652
  23. [23] He K, Luo W, Zhang Y, Liu F, Liu D, Xu L, Qin L, Xiong C, Lu Z, Fang X, Zhang Y. Intercellular transportation of quantum dots mediated by membrane nanotubes. ACS Nano 2010; 4: 3015-3022.10.1021/nn100219820524630
  24. [24] He Y, Wu J, Dressman DC, Iacobuzio-Donahue CH, Markowitz SD, Velculescu VE, Diaz LA, Kinzler KW, Vogelstein B, Papadopoulos N. Heteroplasmic mitochondrial DNA mutations in normal and tumor cells. Nature 2010; 464: 610-614.10.1038/nature08802317645120200521
  25. [25] He K, Zhang X, Dang S, Ma X, Liu F, Xu M, Lv Z, Han D, Fang X, Zhang Y. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res 2011; 92: 39-47.10.1093/cvr/cvr18921719573
  26. [26] Hodneland E, Lundervold A, Gurke S, Tai XCh, Rustom A, Gerdes HH. Automated detection of tunneling nanotubes in 3D images. Cytom Part A 2006; 69A: 961-972.10.1002/cyto.a.2030216969816
  27. [27] Hurtig J, Chiu DT, Onfelt B. Intercellular nanotubes: insights from imaging studies and beyond. Wiley Interdiscip Rev Nanomed Nanobiotech 2010; 2: 260-276.10.1002/wnan.80560258220166114
  28. [28] Kabaso D, Lokar M, Kralj-Iglic V, Veranic P, Iglic A. Temperature and cholera toxin B are factors that influence formation of membrane nanotubues in RT4 and T24 urothelial cancer cell lines. Int J NanoMedicine 2011; 6:495-509.10.2147/IJN.S16982306579621468353
  29. [29] Kabaso D, Bobrovska N, Góźdź W, Gov N, Kralj-Iglic V, Veranic P, Iglic A. On the role of membrane anisotropy and BAR proteins in the stability of tubular membrane structures. J Biomech 2012; 45: 231-238.10.1016/j.jbiomech.2011.10.03922138195
  30. [30] Kabaso D, Bobrovska N, Góźdź W, Gongadze E, Kralj-Iglic V, Zorec R, Iglic A. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components. Bioelectrochemistry 2012; 87: 204-210.10.1016/j.bioelechem.2012.02.00922502994
  31. [31] Kadiu I, Gendelman HE. Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J Proteome Res 2011; 10: 3225-3238.10.1021/pr200262q312846321563830
  32. [32] Kadiu I, Gendelman HE. Human Immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J Neuroimmune Pharmacol 2011; 6: 658-675.10.1007/s11481-011-9298-z323257021789505
  33. [33] Kimura S, Hase K, Ohno H. Tunnel ing nanot ubes: Emerging view of their molecular components and formation mechanisms. Exp Cell Res 2012; 318: 1699-1706.10.1016/j.yexcr.2012.05.01322652450
  34. [34] Langevin CH, Gousset K, Costanzo M, Richard-Le Goff O, Zurzolo C. Characterization of the role of dendritic cells in prion transfer to primary neurons. Biochem J 2010; 431: 189-198. 10.1042/BJ2010069820670217
  35. [35] Lee TH, D`Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J . Microvesicles as mediators of intercellular communication in cancer -the emerging sciene of cellular “debris”. Semin Immunopathol 2011; 33:455-467.10.1007/s00281-011-0250-321318413
  36. [36] Lokar M, Iglic A, Veranic P. Protruding membrane nanotubes: attachment of tubular protrusions to adjacent cells by several anchoring junctions. Protoplasma 2010; 246: 81-87.10.1007/s00709-010-0143-720526853
  37. [37] Lokar M, Kabaso D, Resnik N, Sepcic K, Kralj-Iglic V, Veranic P, Zorec R, Iglic A. The rol e of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomed 2012; 7: 1891-1902.
  38. [38] Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, Gholami S, Moreira A, Manova- Todorova K, Moore MA. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE 2012; 7: e33093.10.1371/journal.pone.0033093330286822427958
  39. [39] Lou E, Fujisawa S, Barlos A, Romin Y, Manova-Todorova K, Moore MA, Subramanian S. Tunneling nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun Integr Biol 2012; 5: 399-403 .10.4161/cib.20569346085023060969
  40. [40] Luchetti F, Canonico B, Arcangeletti M, Guescini M, Cesarini E, Stocchi V, Degli Esposti M, Papa S. Fas signaling promotes intercellular communication in T cells. PLoS ONE 2012; 7: e35766.10.1371/journal.pone.0035766333845722558220
  41. [41] Marzo L, Gousset K, Zurzolo Ch. Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 2012; 3: 1-14.10.3389/fphys.2012.00072332252622514537
  42. [42] Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteomics 2010; 73: 1907-1920.10.1016/j.jprot.2010.06.00620601276
  43. [43] Mcgowan M. Tunnel ing nanot ubes -cr ossing t he br idge. J Cell Mol Biol 2011; 9: 11-18.
  44. [44] Mi L, Xiong R, Zhang Y, Li Z, Yang W, Chen J, Wang P. Microscopic observat ion of t he int er cel lular transport of CdTe quantum dot aggregates through tunneling-nanotubes. J Biomat Nanobiotech 2011; 2: 173-180.10.4236/jbnb.2011.22022
  45. [45] Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B, Wakabayashi J, Sesaki H, Cheng Y, Finkbeiner S, Nussbaum RL, Masliah E, Edwards RH. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J Biol Chem 2011; 286: 20710-20726.10.1074/jbc.M110.213538312147221489994
  46. [46] Niu X, Gupta K, Yang Jt, Shamblott MJ, Levchenko A. Physical transfer of membrane and cytoplasmic components as a general mechanism of cell-cell communication. J. Cell Sci 2008; 122: 600-610.10.1242/jcs.03142719208767
  47. [47] Ohno H, Hase K, Kimura S. Emerging secrets of tunneling nanotube formation. Commum Integr Biol. 2010; 3: 231-233.10.4161/cib.3.3.11242291876320714400
  48. [48] Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis D. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 2006; 177: 8476-8483.10.4049/jimmunol.177.12.847617142745
  49. [49] Pasquier J, Magal P, Boulange-Lecomte C, Webb G, Le Foll F. Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model. Biol Direct 2011; 6: 1-18.10.1186/1745-6150-6-5303898821269489
  50. [50] Pasquier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, Webb G, Le Foll F. Different modalities of intercellular membrane exchanges mediate cell-to-cell P-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 2012; 287: 7374-7387.10.1074/jbc.M111.312157329353722228759
  51. [51] Patschan S, Chen J, Gealekman O, Krupincza K, Wang M, Shu L, Shayman JA, Goligorsky MS. Mechanisms of premature cell senescence: lysosomal dysfunction and ganglioside accumulation in endothelial cells. Am J Physiol Renal Physiol 2008; 294: 100-109.10.1152/ajprenal.00261.200717928415
  52. [52] Plotnikov EY, Khryapenkova TG, Galkina SI, Sukhikh GT, Zorov DB. Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp Cell Res 2010; 316: 2447-2455.10.1016/j.yexcr.2010.06.00920599955
  53. [53] Rechavi O, Goldstein I, Kloog Y. Intercellular exchange of proteins: The immune cell habit of sharing. FEBS Lett 2009; 583: 1792-1799. 10.1016/j.febslet.2009.03.01419289124
  54. [54] Ridley AJ. Life at the leading edge. Cell 2011; 145: 1012-1022.10.1016/j.cell.2011.06.01021703446
  55. [55] Roda-Navarro P, Reyburn HT. Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J 2007; 21: 1636-1646.10.1096/fj.06-7488rev17314139
  56. [56] Rudnicka D, Feldmann J, Porrot F, Wietgrefe S, Guadagnini S, Prevost M-Ch, Estaquier J, Haase AT, Sol-Foulon N, Schwartz O. Simultaneous cell-to-cell transmission of Human Immunodeficiency Virus to multiple targets through polysynapses. J Virol 2009; 83: 6234-6246.10.1128/JVI.00282-09268737919369333
  57. [57] Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science 2004; 303:1007-1010.10.1126/science.109313314963329
  58. [58] Rustom A. Hen or Egg? Some thoughts on tunneling nanotubes. Nat Genetic Engin Nat Genome 2009; 1178: 129-136.
  59. [59] Schiller Ch, Huber JE, Diakopoulos KN, Weiss EH. Tunneling nanotubes enable intercellular transfer of MHC class I molecules. Hum Immunol 2013; 74: 412-416.10.1016/j.humimm.2012.11.02623228397
  60. [60] Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9: 105-127.10.2217/14622416.9.1.10518154452
  61. [61] Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz Ch, Pypaert M, Mothes W. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 2007; 9: 310-315.10.1038/ncb1544262897617293854
  62. [62] Sherer NM, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol 2008; 9: 414-420.
  63. [63] Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 2011; 3: a004697.10.1101/cshperspect.a004697317933821628426
  64. [64] Singh R, Nalwa HS. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents and anticancer nanodrugs. J Biomed Nanotechnol 2011; 7: 489-503.10.1166/jbn.2011.132421870454
  65. [65] Smith IF, Shai J, Parker I. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 2011; 100: L37-L39.10.1016/j.bpj.2011.03.007307770121504718
  66. [66] Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann PH, Brodsky FM, Hopkins C, Onfelt B, Sattentau Q, Davis D. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biol 2008; 10: 211-219.10.1038/ncb168218193035
  67. [67] Sowinski S, Alakoskela JM, Jolly C, Davis D. Optimized methods for imaging membrane nanotubes between T cells and trafficking of HIV-1. Methods 2011; 53: 27-33.10.1016/j.ymeth.2010.04.00220382227
  68. [68] Stinchcombe JC, Salio M, Cerundolo V, Pende D, Arico M, Griffiths GM. Centriole polarization to the immunological synapse direct secretion from cytolytic cells of both the innate and adaptive immune systems. BMC Biol 2011; 9: 45-52.10.1186/1741-7007-9-45314959721711522
  69. [69] Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith Ma, Zhu X. Oxidat ive st r ess signaling in Alzheimer`s disease. Curr Alzheimer Res 2008; 5: 525-532.10.2174/156720508786898451278001519075578
  70. [70] Takahashi A, Kukita A, Zhang J, Nomiyama H, Yamaza T, Ayukawa Y, Koyano K, Kukita T. Tunneling nanotube formation is essential for the regulation of osteoclastogenesis. J Cell Biochem 2012 /doi/ 10.1002/jcb.24433.10.1002/jcb.2443323129562
  71. [71] Veranic P, Lokar M, Schutz Gj, Weghuber J, Wieser S, Hagerstrand H. Different types of cell-tocell connections mediated by nanotubular structures. Biophys J 2008; 95:4416-4425.10.1529/biophysj.108.131375256792418658210
  72. [72] Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. PNAS 2010; 107: 17194-17199.10.1073/pnas.1006785107295145720855598
  73. [73] Wang Y, Cui J, Sun X, Zhang Y. Tunneling nanotube development in astrocytes depends on p53 activation. Cell Death Differ 2011; 18: 732-742.10.1038/cdd.2010.147313190421113142
  74. [74] Wang ZG, Liu SL, Tian ZQ, Zhang ZL, Tang HW, Pang DW. Myosin-driven intercellular transportation of wheat germ agglutinin mediated by membrane nanotubes between human lung cancer cells. ACS Nano 2012; 6: 10033-10041.10.1021/nn303729r23102457
  75. [75] Wittig D, Wang X, Walter C, Gerdes HH, Funk RH, Roehlecke C. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes. PLoS ONE 2012; 7: e33195. 10.1371/journal.pone.0033195331086522457742
  76. [76] Yao J, Oite T, Kitamura M. Gap junctional intercellular communication in the juxtaglomerular apparatus. Am J Physiol Renal Physiol 2009; 296: F939-F946.10.1152/ajprenal.90612.200819073638
  77. [77] Yasuda K, Park HCh, Ratliff B, Addabbo F, Hatzopoulos K, Chander P, Goligorsky MS. Adr iamycin nephropathy. A failure of endothelial progenitor cell-induced repair. Am J Pathol 2010; 176: 1685-1695.10.2353/ajpath.2010.091071284346020167859
  78. [78] Yasuda K, Khandare A, Burianovskyy L, Maruyama S, Zhan F, Nasjletti A, Goligorsky MS. Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 2011; 3: 597-608.10.18632/aging.100341316436821705809
  79. [79] Zani BG, Indofli L, Edelman ER. Tubular bridges for bronchial epithelial cell migration and communication. PLoS ONE 2010; 5: e8930.10.1371/journal.pone.0008930281249320126618
  80. [80] Zhao H, Pykalainen A, Lappalainen P. I-BAR domain proteins: linking actin and plasma membrane dynamics. Curr Opin Cell Biol 2011; 23: 14-21. 10.1016/j.ceb.2010.10.00521093245
Language: English
Page range: 61 - 81
Published on: Oct 15, 2014
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Agnieszka Knopik-Skrocka, Agata Śniegowska, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.