References
- Madaio MP, Harrington JT. The diagnosis of glomerular diseases: acute glomerulonephritis and the nephrotic syndrome. Arch Intern Med. 2001; 161:25–34.
- Hebert LA, Parikh S, Prosek J, Nadasdy T, Rovin BH. Differential diagnosis of glomerular disease: a systematic and inclusive approach. Am J Nephrol. 2013; 38:253–66.
- Ahn W, Bomback AS. Approach to diagnosis and management of primary glomerular diseases due to podocytopathies in adults: core curriculum 2020. Am J Kidney Dis. 2020; 75:955–64.
- Sethi S, De Vriese AS, Fervenza FC. Acute glomerulonephritis. Lancet. 2022; 399:1646–63.
- Kronbichler A, Bajema I, Geetha D, Säemann M. Novel aspects in the pathophysiology and diagnosis of glomerular diseases. Ann Rheum Dis. 2023; 82:585–93.
- Windpessl M, Odler B, Bajema IM, Geetha D, Säemann M, Lee JM, et al. Glomerular diseases across lifespan: key differences in diagnostic and therapeutic approaches. Semin Nephrol. 2023; 43:151435. doi: 10.1016/j.semnephrol.2023.151435
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021; 100:S1–S276.
- Rondon-Berrios H. New insights into the pathophysiology of oedema in nephrotic syndrome. Nefrologia. 2011; 31:148–54.
- Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int. 2012; 82:635–42.
- Kang KK, Choi JR, Song JY, Han SW, Park SH, Yoo WS, et al. Clinical significance of subjective foamy urine. Chonnam Med J. 2012; 48:164–8.
- Khitan ZJ, Glassock RJ. Foamy urine: is this a sign of kidney disease? Clin J Am Soc Nephrol. 2019; 14:1664–6.
- Sumida K, Nadkarni GN, Grams ME, Sang Y, Ballew SH, Coresh J, et al. Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis: an individual participant-based meta-analysis. Ann Intern Med. 2020; 173:426–35.
- Hundemer GL, Imsirovic H, Visram A, McCurdy A, Knoll G, Biyani M, et al. The association between the urine protein-to-albumin gap and the diagnosis of multiple myeloma: a population-based retrospective cohort study. Am J Kidney Dis. 2023; 81:732–4.
- Saha MK, Massicotte-Azarniouch D, Reynolds ML, Mottl AK, Falk RJ, Jennette JC, et al. Glomerular hematuria and the utility of urine microscopy: a review. Am J Kidney Dis. 2022; 80:383–92.
- Schuetz E, Schaefer RM, Heidbreder E, Heidland A. Effect of diuresis on urinary erythrocyte morphology in glomerulonephritis. Klin Wochenschr. 1985; 63:575–7.
- Rath B, Turner C, Hartley B, Chantler C. What makes red cells dysmorphic in glomerular haematuria? Pediatr Nephrol. 1992; 6:424–7.
- Daza JL, De Rosa M, De Rosa G. Dysmorphic red blood cell formation. Cleve Clin J Med. 2018; 85:12–3.
- Zaman Z, Proesmans W. Dysmorphic erythrocytes and G1 cells as markers of glomerular hematuria. Pediatr Nephrol. 2000; 14:980–4.
- Köhler H, Wandel E, Brunck B. Acanthocyturia – a characteristic marker for glomerular bleeding. Kidney Int. 1991; 40:115–20.
- Heine GH, Sester U, Girndt M, Köhler H. Acanthocytes in the urine: useful tool to differentiate diabetic nephropathy from glomerulonephritis? Diabetes Care. 2004; 27:190–4.
- Barros Silva GE, Costa RS, Ravinal RC. Saraiva e Silva J, Dantas M, Coimbra TM. Evaluation of erythrocyte dysmorphism by light microscopy with lowering of the condenser lens: a simple and efficient method. Nephrology (Carlton). 2010; 15:171–7.
- Hamadah AM, Gharaibeh K, Mara KC, Thompson KA, Lieske JC, Said S, et al. Urinalysis for the diagnosis of glomerulonephritis: role of dysmorphic red blood cells. Nephrol Dial Transplant. 2018; 33:1397–403.
- Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int. 2016; 90:41–52.
- Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol. 2018; 14:57–70.
- Zhou Y, Zhang X, Chen L, Wu J, Dang H, Wei M, et al. Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats. Am J Physiol Renal Physiol. 2008; 295:F662–71.
- Haas ME, Levenson AE, Sun X, Liao WH, Rutkowski JM, de Ferranti SD, et al. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation. 2016; 134:61–72.
- Gherardi E, Rota E, Calandra S, Genova R, Tamborino A. Relationship among the concentrations of serum lipoproteins and changes in their chemical composition in patients with untreated nephrotic syndrome. Eur J Clin Invest. 1977; 7:563–70.
- O’Shaughnessy MM, Hogan SL, Thompson BD, Coppo R, Fogo AB, Jennette JC. Glomerular disease frequencies by race, sex and region: results from the International kidney biopsy survey. Nephrol Dial Transplant. 2018; 33:661–9.
- Goto K, Imaizumi T, Hamada R, Ishikura K, Kosugi T, Narita I, et al. Renal pathology in adult and paediatric population of Japan: review of the Japan renal biopsy registry database from 2007 to 2017. J Nephrol. 2023; 36:2257–67.
- Kanjanabuch T, Isaranuwatchai S, Nopsopon T, Thammathiwat T, Pooprasert T, Puapatanakul P, et al. Exploring hospital practice types and their impact on glomerular pathologic patterns: insights from the largest kidney biopsy cohort in Thailand. Nephrology (Carlton). 2023; 28(Suppl 1):24–34.
- Thurman JM. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis. 2015; 65:156–68.
- Zipfel PF, Wiech T, Gröne HJ, Skerka C. Complement catalyzing glomerular diseases. Cell Tissue Res. 2021; 385:355–70.
- Johnson RJ, Feehally J, Floege J Jr. Comprehensive clinical nephrology. Philadelphia, PA: Elsevier/Saunders; 2015. Available from: https://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20120000294
- Zand L, Kattah A, Fervenza FC, Smith RJ, Nasr SH, Zhang Y, et al. C3 glomerulonephritis associated with monoclonal gammopathy: a case series. Am J Kidney Dis. 2013; 62:506–14.
- Ravindran A, Fervenza FC, Smith RJH, Sethi S. C3 glomerulopathy associated with monoclonal Ig is a distinct subtype. Kidney Int. 2018; 94:178–86.
- Smith RJH, Appel GB, Blom AM, Cook HT, D’Agati VD, Fakhouri F, et al. C3 glomerulopathy – understanding a rare complement driven renal disease. Nat Rev Nephrol. 2019; 15:129–43.
- Medjeral-Thomas NR, Cook HT, Pickering MC. Complement activation in IgA nephropathy. Semin Immunopathol. 2021; 43:679–90.
- Tringali E, Vetrano D, Tondolo F, Maritati F, Fabbrizio B, Pasquinelli G, et al. Role of serum complement C3 and C4 on kidney outcomes in IgA nephropathy. Sci Rep. 2024; 14:16224. doi: 10.1038/s41598-024-65857-w
- Russell MW, Mansa B. Complement-fixing properties of human IgA antibodies. Alternative pathway complement activation by plastic-bound, but not specific antigen-bound, IgA. Scand J Immunol. 1989; 30:175–83.
- Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol. 2015; 26:1503–12.
- Bao L, Cunningham PN, Quigg RJ. Complement in lupus nephritis: new perspectives. Kidney Dis (Basel). 2015; 1:91–9.
- Kharouf F, Li Q, Whittall Garcia LP, Jauhal A, Gladman DD, Touma Z. Short- and long-term outcomes of patients with pure membranous lupus nephritis compared with patients with proliferative disease. Rheumatology (Oxford). 2025; 64:1912–22.
- Fraticelli P, Benfaremo D, Gabrielli A. Diagnosis and management of leukocytoclastic vasculitis. Intern Emerg Med. 2021; 16:831–41.
- Esson GA, Hussain AB, Meggitt SJ, Reynolds NJ, Sayer JA. Cutaneous manifestations of acute kidney injury. Clin Kidney J. 2022; 15:855–64.
- Poyan Mehr A, Jonasdottir A. GlomCon Pubs (accessed on 27 February 2025). Available from: https://pubs.glomcon.org/measuring-outcomes-in-glomerular-diseases/
- Kashtan CE, Ding J, Garosi G, Heidet L, Massella L, Nakanishi K, et al. Alport Syndrome: a unified classification of genetic disorders of collagen IV α345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018; 93:1045–51.
- Leisring J, Brodsky SV, Parikh SV. Clinical evaluation and management of thrombotic microangiopathy. Arthritis Rheumatol. 2024; 76:153–65.
- Udomkarnjananun S, Townamchai N, Virojanawat M, Avihingsanon Y, Praditpornsilpa K. An unusual manifestation of calcineurin inhibitor-induced pain syndrome in kidney transplantation: a case report and literature review. Am J Case Rep. 2018; 19:442–6.
- Moghaddas Sani H, Zununi Vahed S, Ardalan M. Preeclampsia: a close look at renal dysfunction. Biomed Pharmacother. 2019; 109:408–16.
- D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004; 43:368–82.
- Deegens JK, Steenbergen EJ, Borm GF, Wetzels JF. Pathological variants of focal segmental glomerulosclerosis in an adult Dutch population – epidemiology and outcome. Nephrol Dial Transplant. 2008; 23:186–92.
- Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis. 2018; 71:884–95.
- Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021; 2021:1497449. doi: 10.1155/2021/1497449
- Shi S, Ni L, Gao L, Wu X. Comparison of nonalbuminuric and albuminuric diabetic kidney disease among patients with type 2 diabetes: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2022; 13:871272. doi: 10.3389/fendo.2022.871272
- Scilletta S, Di Marco M, Miano N, Filippello A, Di Mauro S, Scamporrino A, et al. Update on diabetic kidney disease (DKD): focus on non-albuminuric DKD and cardiovascular risk. Biomolecules. 2023; 13:752. doi: 10.3390/biom13050752
- Di Vincenzo A, Bettini S, Russo L, Mazzocut S, Mauer M, Fioretto P. Renal structure in type 2 diabetes: facts and misconceptions. J Nephrol. 2020; 33:901–7.
- Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020; 22(Suppl 1):3–15.