Have a personal or library account? Click to login
Understanding the genetics and neurology: an overview of adult neurogenetics Cover

References

  1. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. Science. 2022; 376:44–53.
  2. Roy SW, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006; 7:211–21.
  3. Sadeghalvad M, Rezaei N. Introduction on laboratory tests for diagnosis of infectious diseases and immunological disorders. In: Rezaei N, editor. Encyclopedia of infection and immunity. Oxford: Elsevier; 2022, p. 1–18.
  4. Kaufmann WE. Neurogenetics in child neurology: redefining a discipline in the twenty-first century. Curr Neurol Neurosci Rep. 2016; 16(12):103. doi: 10.1007/s11910-016-0703-0
  5. Klee EW, Hoppman-Chaney NL, Ferber MJ. Expanding DNA diagnostic panel testing: is more better? Expert Rev Mol Diagn. 2011; 11:703–9.
  6. Peleg A, Sagi-Dain L, Golan D. Diagnostic yield and recognized barriers of an adult neurogenetics clinic. J Community Genet. 2021; 12:569–76.
  7. Shakiba M, Keramatipour M. Effect of whole exome sequencing in diagnosis of inborn errors of metabolism and neurogenetic disorders. Iran J Child Neurol. 2018; 12:7–15.
  8. Hendriks S, Peetoom K, Bakker C, van der Flier WM, Papma JM, Koopmans R, et al. Global prevalence of young-onset dementia: a systematic review and meta-analysis. JAMA Neurol. 2021; 78:1080–90.
  9. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol. 2020; 16:30–42.
  10. Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A. Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis. 2011; 2011:832379. doi: 10.4061/2011/832379
  11. Zhang ZG, Li Y, Ng CT, Song YQ. Inflammation in Alzheimer's disease and molecular genetics: recent update. Arch Immunol Ther Exp (Warsz). 2015; 63:333–44.
  12. Zhang Q, Sidorenko J, Couvy-Duchesne B, Marioni RE, Wright MJ, Goate AM, et al. Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture. Nat Commun. 2020; 11:4799. doi: 10.1038/s41467-020-18534-1
  13. Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu G, et al. Genetics ignite focus on microglial inflammation in Alzheimer's disease. Mol Neurodegener. 2015; 10:52. doi: 10.1186/s13024-015-0048-1
  14. Sims R, Hill M, Williams J. The multiplex model of the genetics of Alzheimer's disease. Nat Neurosci. 2020; 23:311–22.
  15. Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 2005; 65:1817–9.
  16. Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol. 2019; 266:2075–86.
  17. Wagner M, Lorenz G, Volk AE, Brunet T, Edbauer D, Berutti R, et al. Clinico-genetic findings in 509 frontotemporal dementia patients. 2021; 26:5824–32.
  18. Sieben A, Van Langenhove T, Engelborghs S, Martin JJ, Boon P, Cras P, et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012; 124:353–72.
  19. Hua P, Zhao Y, Zeng Q, Li L, Ren J, Guo J, et al. Genetic analysis of patients with early-onset parkinson's disease in eastern China. Front Aging Neurosci. 2022; 14:849462. doi: 10.3389/fnagi.2022.849462
  20. Gibb WR, Lees AJ. A comparison of clinical and pathological features of young- and old-onset Parkinson's disease. Neurology. 1988; 38:1402–6.
  21. Riboldi GM, Frattini E, Monfrini E, Frucht SJ, Di Fonzo A. A practical approach to early-onset Parkinsonism. J Parkinsons Dis. 2022; 12:1–26.
  22. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019; 18:1091–102.
  23. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998; 57:369–84.
  24. Semaka A, Kay C, Doty C, Collins JA, Bijlsma EK, Richards F, et al. CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J Med Genet. 2013; 50:696–703.
  25. Ha AD, Jankovic J. Exploring the correlates of intermediate CAG repeats in Huntington disease. Postgrad Med. 2011; 123:116–21.
  26. McAllister B, Gusella JF, Landwehrmeyer GB, Lee JM, MacDonald ME, Orth M, et al. Timing and impact of psychiatric, cognitive, and motor abnormalities in Huntington disease. Neurology. 2021; 96:e2395–e2406.
  27. Hensman Moss DJ, Poulter M, Beck J, Hehir J, Polke JM, Campbell T, et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology. 2014; 82:292–9.
  28. Margolis RL, Holmes SE, Rosenblatt A, Gourley L, O'Hearn E, Ross CA, et al. Huntington's disease-like 2 (HDL2) in North America and Japan. Ann Neurol. 2004; 56:670–4.
  29. Walker FO. Huntington's disease. Lancet. 2007; 369:218–28.
  30. Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol. 2023; 22:735–49.
  31. van Prooije T, Ibrahim NM, Azmin S, van de Warrenburg B. Spinocerebellar ataxias in Asia: prevalence, phenotypes and management. Parkinsonism Relat Disord. 2021; 92:112–8.
  32. Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med. 1996; 335:1169–75.
  33. Chutake YK, Lam C, Costello WN, Anderson M, Bidichandani SI. Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length. Ann Neurol. 2014; 76:522–8.
  34. Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol. 2012; 27:1133–7.
  35. Koeppen AH, Mazurkiewicz JE. Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol. 2013; 72:78–90.
  36. Harding AE. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981; 104:589–620.
  37. Meola G, Moxley RT 3rd. Myotonic dystrophy type 2 and related myotonic disorders. J Neurol. 2004; 251:1173–82.
  38. Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992; 255:1256–8.
  39. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001; 293:864–7.
  40. Bouchard JP, Cossette L, Bassez G, Puymirat J. Natural history of skeletal muscle involvement in myotonic dystrophy type 1: a retrospective study in 204 cases. J Neurol. 2015; 262:285–93.
  41. Whittaker RG, Ferenczi E, Hilton-Jones D. Myotonic dystrophy: practical issues relating to assessment of strength. J Neurol Neurosurg Psychiatry. 2006; 77:1282–3.
  42. Worton R. Muscular dystrophies: diseases of the dystrophinglycoprotein complex. Science. 1995; 270:755–6.
  43. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988; 2:90–5.
  44. Gardner-Medwin D. Clinical features and classification of the muscular dystrophies. Br Med Bull. 1980; 36:109–15.
  45. Farrar MA, Kiernan MC. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics. 2015; 12:290–302.
  46. Nance JR. Spinal muscular atrophy. Continuum (Minneap Minn). 2020; 26:1348–68.
  47. Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014; 10:661–70.
  48. Quinn C, Elman L. Amyotrophic lateral sclerosis and other motor neuron diseases. Continuum (Minneap Minn). 2020; 26:1323–47.
  49. Dyck PJ, Lambert EH. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol. 1968; 18:603–18.
  50. Rossor AM, Evans MR, Reilly MM. A practical approach to the genetic neuropathies. Pract Neurol. 2015; 15:187–98.England: Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
  51. Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein, et al. Management of inherited CNS small vessel diseases: the CADASIL example: a scientific statement from the American Heart Association. Stroke. 2023; 54:e452–e464.
  52. Mizuno T, Mizuta I, Watanabe-Hosomi A, Mukai M, Koizumi T. Clinical and genetic aspects of CADASIL. Front Aging Neurosci. 2020; 12:91. doi: 10.3389/fnagi.2020.00091
  53. Di Donato I, Bianchi S, De Stefano N, Dichgans M, Dotti MT, Duering M, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Med. 2017; 15:41. doi: 10.1186/s12916-017-0778-8
  54. Uemura M, Nozaki H, Kato T, Koyama A, Sakai N, Ando S, et al. HTRA1-related cerebral small vessel disease: a review of the literature. Front Neurol. 2020; 11:545. doi: 10.3389/fneur.2020.00545
  55. Nozaki H, Nishizawa M, Onodera O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014; 45:3447–53.
  56. DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006; 18:636–41.
  57. DiMauro S, Hirano M. Mitochondrial encephalomyopathies: an update. Neuromuscul Disord. 2005; 15:276–86.
  58. Saneto RP. Genetics of mitochondrial disease. Adv Genet. 2017; 98:63–116.
  59. DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology. Nat Rev Neurol. 2013; 9:429–44.
  60. Lightowlers RN, Taylor RW, Turnbull DM. Mutations causing mitochondrial disease: what is new and what challenges remain? Science. 2015; 349:1494–9.
  61. Bovis F, Kalincik T, Lublin F, Cutter G, Malpas C, Horakova D, et al. Treatment response score to glatiramer acetate or interferon beta-1a. Neurology. 2021; 96:e214–e227.
  62. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic aetiology of Alzheimer's disease and related dementias. Nat Genet. 2022; 54:412–36.
  63. Fan L, Mao C, Hu X, Zhang S, Yang Z, Hu Z, et al. New insights into the pathogenesis of Alzheimer's disease. Front Neurol. 2019; 10:1312. doi: 10.3389/fneur.2019.01312
  64. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011; 378:595–605.
  65. Frank DE, Schnell FJ, Akana C, El-Husayni SH, Desjardins CA, Morgan J, et al. Increased dystrophin production with Golodirsen in patients with Duchenne muscular dystrophy. Neurology. 2020; 94:e2270–e2282.
  66. Clemens PR, Rao VK, Connolly AM, Harper AD, Mah JK, Smith EC, et al. Safety, tolerability, and efficacy of viltolarsen in boys with duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 2020; 77:982–91.
  67. Mendell JR, Sahenk Z, Lehman K, Nease C, Lowes LP, Miller NF, et al. Assessment of systemic delivery of rAAVrh74. MHCK7.micro-dystrophin in children with duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 2020; 77:1122–31.
  68. Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. Risdiplam in type 1 spinal muscular atrophy. N Engl J Med. 2021; 384:915–23.
  69. Verma A, Tandan R. RNA quality control and protein aggregates in amyotrophic lateral sclerosis: a review. Muscle Nerve. 2013; 47:330–8.
  70. Peters OM, Ghasemi M, Brown RH Jr. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015; 125:1767–79.
  71. Ito D, Suzuki N. Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS. Neurology. 2011; 77:1636–43.
  72. Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022; 387:1099–110.
  73. Riviere M, Meininger V, Zeisser P, Munsat T. An analysis of extended survival in patients with amyotrophic lateral sclerosis treated with riluzole. Arch Neurol. 1998; 55:526–8.
  74. Writing Group; Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017; 16:505–12.
  75. Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020; 383:919–30.
  76. Mani I. CRISPR-Cas9 for treating hereditary diseases. Prog Mol Biol Transl Sci. 2021; 181:165–83.
  77. Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, et al. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther. 2023; 8:36. doi: 10.1038/s41392-023-01309-7
DOI: https://doi.org/10.2478/abm-2025-0022 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 197 - 209
Published on: Aug 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Pasin Hemachudha, Prakit Anukoolwittaya, Thanakit Pongpitakmetha, Yutthana Joyjinda, Chanida Ruchisrisarod, Abhinbhen W. Saraya, Wanakorn Rattanawong, Poosanu Thanapornsungsuth, Thiravat Hemachudha, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution 4.0 License.