Have a personal or library account? Click to login
The novel risk score model for predicting the poor anticoagulation control in patients with atrial fibrillation taking warfarin Cover

The novel risk score model for predicting the poor anticoagulation control in patients with atrial fibrillation taking warfarin

Open Access
|Apr 2025

Figures & Tables

Figure 1.

Flow diagram of study patients. INR, international normalized ratio; TTR, time in therapeutic range.
Flow diagram of study patients. INR, international normalized ratio; TTR, time in therapeutic range.

Figure 2.

ROC curve illustrating discrimination performance between (A) SHOB-D2AF score and SAMe-TT2R2 score and (B) predicted probability derived from SHOB-D2AF score and SAMe-TT2R2 score. AF, atrial fibrillation; AUC, area under the curve; ROC, receiver operating characteristic.
ROC curve illustrating discrimination performance between (A) SHOB-D2AF score and SAMe-TT2R2 score and (B) predicted probability derived from SHOB-D2AF score and SAMe-TT2R2 score. AF, atrial fibrillation; AUC, area under the curve; ROC, receiver operating characteristic.

Figure 3.

NRI of SHOB-D2AF compared with SAMe-TT2R2 model. AF, atrial fibrillation; IDI, Integrated Discrimination Index; NRI, Net Reclassification Index; TTR, time in therapeutic range.
NRI of SHOB-D2AF compared with SAMe-TT2R2 model. AF, atrial fibrillation; IDI, Integrated Discrimination Index; NRI, Net Reclassification Index; TTR, time in therapeutic range.

Mean TTR stratified by SHOB-D2AF score and SAMe-TT2R2 score

Risk scoring systemNo. of patientsMean TTR ± SD
SHOB-D2AF score
 01071.9 ± 28.2
 116059.0 ± 27.8
 242357.9 ± 25.4
 366055.2 ± 25.6
 454451.8 ± 26.9
 529748.5 ± 25.8
 610643.1 ± 25.3
 73240.9 ± 23.5
 8147.4 ± 0.0
Total2,23353.6 ± 26.4
 SAMe-TT2R2 score
 252653.8 ± 25.4
 31,04153.9 ± 27.2
 458353.2 ± 25.8
 57550.8 ± 26.0
 6845.7 ± 24.1
Total2,23353.6 ± 26.4

Definition of SHOB-D2AF score

AcronymDescriptionCoefficientPoints
SSymptomatic AF0.2580211
HHeart failure0.2642881
OOmit obesity (BMI < 25 kg/m2)0.2003321
BBleeding history0.3065951
D2Diabetes0.3962912
AFDuration from AF diagnosis <2 years0.3133931
Non-paroxysmal AF0.2550411
Constant0.531131
Maximum points 8

Baseline characteristics of the study population

VariablesAll patients (n = 2,233) n (%)TTR ≥ 65% (n = 801) n (%)TTR < 65% (n = 1,432) n (%)P
Age (years)68.9 ± 10.668.6 ± 10.669 ± 10.50.44
Female sex980 (43.9)351 (43.8)629 (43.9)0.96
BMI (kg/m2)25.3 ± 4.825.5 ± 4.625.1 ± 4.90.08
Duration from AF diagnosis (years)3.6 ± 4.43.8 ± 4.73.4 ± 4.20.04*
AF pattern 0.09
 Paroxysmal AF631 (28.3)249 (31.1)382 (26.7)
 Persistent AF421 (18.9)145 (18.1)276 (19.3)
 Permanent AF1,181 (52.9)407 (50.8)774 (54.1)
Symptomatic AF1,720 (77.0)592 (73.9)1,128 (78.8)0.01*
Medical history
 Diabetes610 (27.3)184 (23)426 (29.7)<0.01*
 Hypertension1,641 (73.5)574 (71.7)1,067 (74.5)0.14
 Dyslipidemia1,320 (59.1)485 (60.5)835 (58.3)0.30
 CAD356 (15.9)124 (15.5)232 (16.2)0.66
 MI130 (5.8)41 (5.1)89 (6.2)0.29
 PAD29 (1.3)12 (1.5)17 (1.2)0.53
 Heart failure628 (28.1)192 (24)436 (30.4)<0.01*
 Previous ischemic stroke/TIA485 (21.7)193 (24.1)292 (20.4)0.04*
 Liver cirrhosis48 (2.1)16 (2.0)32 (2.2)0.77
 Pulmonary disease23 (1.0)9 (1.1)14 (1.0)0.74
 CKD1,226 (54.9)421 (52.6)805 (56.2)0.10
 Dementia20 (0.9)8 (1.0)12 (0.8)0.70
 Hyperthyroidism87 (3.9)29 (3.6)58 (4.1)0.62
 Hypothyroidism56 (2.5)17 (2.1%)39 (2.7)0.38
 Anemia899 (40.3)285 (35.6)614 (42.9)<0.01*
 History of bleeding241 (10.8)73 (9.1)168 (11.7)0.06
Smoking status 0.80
 Current smoking51 (2.3)17 (2.1)34 (2.4)
 Ex-smoking363 (16.3)135 (16.9)228 (15.9)
Alcohol use73 (3.3)22 (2.7)51 (3.6)0.30
CHA2DS2-VASc score3.4 ± 1.63.3 ± 1.63.4 ± 1.50.08
HAS-BLED score1.6 ± 1.01.5 ± 1.01.7 ± 1.0<0.01*
LVEF (%)59.7 ± 14.260.5 ± 13.559.2 ± 14.50.04*
TTR (%)53.6 ± 26.481.5 ± 11.238 ± 18.3<0.01*
Concomitant medications
 Antiplatelet277 (12.4)86 (10.7)191 (13.3)0.07
 NSAIDs37 (1.7)14 (1.7)23 (1.6)0.80
 Amiodarone/dronedarone104 (4.7)37 (4.6)67 (4.7)0.95
 Flecainide/propafenone18 (0.8)6 (0.7)12 (0.8)0.82
 Digitalis371 (16.6)126 (15.7)245 (17.1)0.40

Predictors of poor anticoagulation control

PredictorsUnivariate analysisMultivariate analysis
OR (95% CI)POR (95% CI)P
Age ≥75 (years)1.10 (0.91–1.33)0.32
Female sex1.00 (0.84–1.20)0.96
BMI ≥25 (kg/m2)0.86 (0.73–1.03)0.100.82 (0.68–0.98)0.03*
Duration from AF diagnosis ≥2 years0.76 (0.64–0.91)<0.01*0.73 (0.61–0.88)<0.01*
AF pattern
 Paroxysmal AF1.24 (1.03–1.50)0.03*0.78 (0.64–0.94)0.01*
 Persistent AF1.08 (0.87–1.35)0.497
 Permanent AF1.14 (0.96–1.35)0.14
Symptomatic AF1.31 (1.07–1.60)0.01*1.29 (1.05–1.59)0.01*
Diabetes1.42 (1.16–1.73)<0.01*1.49 (1.21–1.83)<0.01*
Hypertension1.16 (0.95–1.40)0.14
Dyslipidemia0.91 (0.76–1.09)0.30
CAD1.06 (0.83–1.34)0.66
MI1.23 (0.84–1.80)0.29
PAD0.79 (0.38–1.66)0.54
Heart failure1.39 (1.14–1.69)<0.01*1.30 (1.07–1.59)0.01*
Previous ischemic stroke/TIA0.81 (0.66–0.99)0.04*
Liver cirrhosis1.12 (0.61–2.06)0.71
Pulmonary disease0.87 (0.37–2.02)0.74
CKD1.16 (0.97–1.38)0.10
Dementia0.84 (0.34–2.06)0.70
Hyperthyroidism1.12 (0.71–1.77)0.62
Hypothyroidism1.29 (0.73–2.30)0.39
Anemia1.36 (1.14–1.63)<0.01*
History of bleeding1.33 (0.99–1.77)0.061.36 (1.01–1.83)0.04*
Smoking status0.96 (0.77–1.19)0.69
Alcohol use1.31 (0.79–2.17)0.30
LVEF < 50%1.28 (1.02–1.60)0.03*
Antiplatelet1.28 (0.98–1.68)0.07
NSAIDs0.92 (0.47–1.79)0.80
Amiodarone/dronedarone1.01 (0.67–1.53)0.95
Flecainide/propafenone1.12 (0.42–3.00)0.82
Digitalis1.11 (0.87–1.40)0.40

The sensitivity, specificity, predictive value, and AUC of the risk score system in predicting poor anticoagulation control

Risk scoring systemSensitivity (95% CI)Specificity (95% CI)PPV (95%CI)NPV (95% CI)AUC (95% CI)
SHOB-D2AF score ≥447.9(45.3–50.5)63.3(59.9–66.6)70.0(67.1–72.8)40.5(37.8–43.2)0.584(0.563–0.604)
SAMe-TT2R2 score ≥376.3(74.0–78.4)23.1(20.3–26.2)64.0(61.7–66.2)35.2(31.3–39.4)0.506(0.485–0.527)
DOI: https://doi.org/10.2478/abm-2025-0013 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 106 - 113
Published on: Apr 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Komsing Methavigul, Rungroj Krittayaphong, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution 4.0 License.