Have a personal or library account? Click to login
Alginate–gelatin hydrogel supplemented with platelet concentrates can be used as bioinks for scaffold printing Cover

Alginate–gelatin hydrogel supplemented with platelet concentrates can be used as bioinks for scaffold printing

Open Access
|Oct 2023

References

  1. Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017; 45:148–63.
  2. Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review. Gels. 2022; 8:179. doi: 10.3390/gels8030179
  3. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018; 22:11. doi: 10.1186/s40824-018-0122-1
  4. Mendes BB, Gómez-Florit M, Hamilton AG, Detamore MS, Domingues RMA, Reis RL, Gomes ME. Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication. 2019; 12:015012. doi: 10.1088/1758-5090/ab33e8
  5. Somasekharan LT, Kasoju N, Raju R, Bhatt A. Formulation and characterization of alginate dialdehyde, gelatin, and platelet-rich plasma-based bioink for bioprinting applications. Bioengineering (Basel). 2020; 7:108. doi: 10.3390/bioengineering7030108
  6. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012; 37:106–26.
  7. Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials (Basel). 2021; 14:858. doi: 10.3390/ma14040858
  8. Yoon SJ, Yoo Y, Nam SE, Hyun H, Lee DW, Um S, et al. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model. Mar Drugs. 2018; 16:351. doi: 10.3390/md16100351
  9. Caruana A, Savina D, Macedo JP, Soares SC. From platelet-rich plasma to advanced platelet-rich fibrin: biological achievements and clinical advances in modern surgery. Eur J Dent. 2019; 13:280–6.
  10. Ding ZY, Tan Y, Peng Q, Zuo J, Li N. Novel applications of platelet concentrates in tissue regeneration (Review). Exp Ther Med. 2021; 21:226. doi: 10.3892/etm.2021.9657
  11. Irmak G, Gümüşderelioğlu M. Photo-activated platelet-rich plasma (PRP)-based patient-specific bioink for cartilage tissue engineering. Biomed Mater. 2020; 15:065010. doi: 10.1088/1748-605X/ab9e46
  12. Li Z, Zhang X, Yuan T, Zhang Y, Luo C, Zhang J, et al. Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration. Tissue Eng Part A. 2020; 26:886–95.
  13. Yi K, Li Q, Lian X, Wang Y, Tang Z. Utilizing 3D bioprinted platelet-rich fibrin-based materials to promote the regeneration of oral soft tissue. Regen Biomater. 2022; 9:rbac021. doi: 10.1093/rb/rbac021
  14. Hoang ML, TVL Tuyet, TLB Ha. Platelet-rich plasma extract promoting migration of mouse bone marrow cells. Res J Biotech. 2022; 17:42–7.
  15. Standardization, I.J.I.G., Switzerland, biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. 2009.
  16. Paredes Juárez GA, Spasojevic M, Faas MM, de Vos P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol. 2014; 2:26.
  17. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. crosslinking strategies for 3d bioprinting of polymeric hydrogels. Small. 2020; 16:e2002931. doi: 10.1002/smll.202002931
  18. Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B. 2020; 8:8171–88.
  19. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Evaluation of alginate-based bioinks for 3D bioprinting, mesenchymal stromal cell osteogenesis, and application for patient-specific bone grafts. bioRxiv. 2020: 2020.08.09.242131. doi: 10.1101/2020.08.09.242131
  20. Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010; 31:6279–308.
  21. Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol. 2003; 36:49–59.
  22. Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005; 6:209. doi: 10.1186/gb-2005-6-2-209
  23. Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, Jansen JA. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011; 28:1259–72.
  24. Mao H, Kim SM, Ueki M, Ito Y. Serum-free culturing of human mesenchymal stem cells with immobilized growth factors. J Mater Chem B. 2017; 5:928–34.
  25. Moncion A, Lin M, O’Neill EG, Franceschi RT, Kripfgans OD, Putnam AJ, Fabiilli ML. Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds. Biomaterials. 2017; 140:26–36.
  26. Pan T, Song W, Cao X, Wang Y. 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Material Sci Tech. 2016; 32:889–900.
  27. Giuseppe MD, Law N, Webb B, A Macrae R, Liew LJ, Sercombe TB, Dilley RJ, et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018; 79: 150–7.
  28. Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 2015; 7:045002. doi: 10.1088/1758-5090/7/4/045002
  29. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001; 21:5899–912.
  30. Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of growth factors for cell therapy manufacturing. Front Bioeng Biotechnol. 2020; 8:620. doi: 10.3389/fbioe.2020.00620. Erratum in: Front Bioeng Biotechnol. 2020; 8:821.
  31. Franz KC, Suschek CV, Grotheer V, Akbas M, Pallua N. Impact of growth factor content on proliferation of mesenchymal stromal cells derived from adipose tissue. PLoS One. 2020; 15:e0230265. doi: 10.1371/journal.pone.0230265
DOI: https://doi.org/10.2478/abm-2023-0063 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 222 - 229
Published on: Oct 26, 2023
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 Tuyet Thi Vi Le, Nghia Thi Hieu Phan, Ha Le Bao Tran, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution 4.0 License.