Have a personal or library account? Click to login
Osteoinductive potential of small intestinal submucosa/ demineralized bone matrix as composite scaffolds for bone tissue engineering Cover

Osteoinductive potential of small intestinal submucosa/ demineralized bone matrix as composite scaffolds for bone tissue engineering

Open Access
|Apr 2018

References

  1. 1. Honsawek S, Parkpian V. Tissue engineering for bone regeneration: stem cells and growth factors in biomaterial scaffolds. Asian Biomed. 2007; 1:229-38.
  2. 2. Kokich VG. Maxillary lateral incisor implants: planning with the aid of orthodontics. J Oral Maxillofac Surg. 2004; 62:48-56.10.1016/j.joms.2004.05.210
  3. 3. Guo H, Su J, Wei J, Kong H, Liu C. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 2009; 5:268-78.10.1016/j.actbio.2008.07.018
  4. 4. Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, et al. In vivo degradation of threedimensional silk fibroin scaffolds. Biomaterials. 2008; 29:3415-28.10.1016/j.biomaterials.2008.05.002
  5. 5. Palmer EM, Beilfuss BA, Nagai T, Semnani RT, Badylak SF, Van Seventer GA. Human helper T cell activation and differentiation is suppressed by porcine small intestinal submucosa. Tissue Eng. 2002; 8: 893-900.10.1089/10763270260424259
  6. 6. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001; 71:1631-40.10.1097/00007890-200106150-00024
  7. 7. Kropp BP. Small-intestinal submucosa for bladder augmentation: a review of preclinical studies. World J Urol. 1998; 16:262-7.10.1007/s003450050064
  8. 8. Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S, et al. Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology. 1988; 94:257-65.10.1016/0016-5085(88)90411-8
  9. 9. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997; 67:478-91.10.1002/(SICI)1097-4644(19971215)67:4<;478::AID-JCB6>3.0.CO;2-P
  10. 10. Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002; 8:295-308.10.1089/107632702753725058
  11. 11. Bello YM, Falabella AF, Eaglstein WH. Tissueengineered skin. Current status in wound healing. Am J Clin Dermatol. 2001; 2:305-13.10.2165/00128071-200102050-00005
  12. 12. Zhang Y, Kropp BP, Moore P, Cowan R, Furness PD, Kolligian ME, et al. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol. 2000; 164:928-34.10.1016/S0022-5347(05)67220-5
  13. 13. Gastel JA, Muirhead WR, Lifrak JT, Fadale PD, Hulstyn MJ, Labrador DP. Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy. 2001; 17:151-9.10.1053/jars.2001.2095911172244
  14. 14. Honsawek S, Powers RM, Wolfinbarger L. Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank. 2005; 6: 13-23.10.1007/s10561-005-1445-415735897
  15. 15. Honsawek S, Dhitiseith D, Phupong V. Gene expression characteristics of osteoblast differentiation in human umbilical cord mesenchymal stem cells induced by demineralized bon ematrix. Asian Biomed. 2007; 1: 383-91.
  16. 16. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893-9.10.1126/science.150.3698.8935319761
  17. 17. Honsawek S, Dhitiseith D, Phupong V. Effects of demineralized bone matrix on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J Med Assoc Thai. 2006; 89S:S189-95.
  18. 18. Badylak S, Arnoczky S, Plouhar P, Haut R, Mendenhall V, Clarke R, et al. Naturally occurring extracellular matrix as a scaffold for musculoskeletal repair. Clin Orthop Relat Res. 1999; 367S:S333-43.10.1097/00003086-199910001-0003210546657
  19. 19. Zhang M, Powers RM Jr, Wolfinbarger L Jr. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol. 1997; 68: 1085-92.10.1902/jop.1997.68.11.10859407401
  20. 20. Wolfinbarger L Jr, Zheng Y. An in vitro bioassay to assess biological activity in demineralized bone. In Vitro Cell Dev Biol Anim. 1993; 29A:914-6.10.1007/BF026342288167913
  21. 21. Honsawek S, Dhitiseith D. Content of bone morphogenetic protein-4 in human demineralized bone: relationship to donor age and ability to induce new bone formation. J Med Assoc Thai. 2005; 88S:S260-5.
  22. 22. MacIntosh AC, Kearns VR, Crawford A, Hatton PV. Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med. 2008; 2:71-80.10.1002/term.6818383453
  23. 23. Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008; 14:199-215.10.1089/ten.teb.2007.043518544016
  24. 24. Vert M. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007; 32:762-98.10.1016/j.progpolymsci.2007.05.017
  25. 25. Kropp BP, Badylak S, Thor KB. Regenerative bladder augmentation: a review of the initial preclinical studies with porcine small intestinal submucosa. Adv Exp Med Biol. 1995; 385:229-35.10.1007/978-1-4899-1585-6_28
  26. 26. Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials. 2007; 28:5137-43.10.1016/j.biomaterials.2007.08.014
  27. 27. Kim MS, Lee MS, Hong KD, Song IB, Lee HR, Lee SJ, et al. Preparation of sponge using porcine small intestinal submucosa and their applications as a scaffold and a wound dressing. Adv Exp Med Biol. 2006; 585:209-22.10.1007/978-0-387-34133-0_15
  28. 28. Voytik-Harbin SL, Badylak SF. Induction of osteogenic activity by small intestinal submucosa in rat calvaria non-union defects. Trans First SIS Symposium. 1996: 31.
  29. 29. Suckow MA, Voytik-Harbin SL, Terril LA, Badylak SF. Enhanced bone regeneration using porcine small intestinal submucosa. J Invest Surg. 1999; 12:277-87.10.1080/089419399272395
  30. 30. Wada Y, Kataoka H, Yokose S, Ishizuya T, Miyazono K, Gao YH, et al. Changes in osteoblast phenotype during differentiation of enzymatically isolated rat calvaria cells. Bone. 1998; 22:479-85.10.1016/S8756-3282(98)00039-8
  31. 31. Moore DC, Pedrozo HA, Crisco JJ 3rd, Ehrlich MG. Preformed grafts of porcine small intestine submucosa (SIS) for bridging segmental bone defects. J Biomed Mater Res A. 2004; 69:259-66.10.1002/jbm.a.2012315057998
  32. 32. Dejardin LM, Arnoczky SP, Ewers BJ, Haut RC, Clarke RB. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am J Sports Med. 2001; 29:175-84.10.1177/0363546501029002100111292042
DOI: https://doi.org/10.2478/abm-2010-0119 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 913 - 922
Published on: Apr 13, 2018
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 Sittisak Honsawek, Piyanuch Bumrungpanichthaworn, Voranuch Thanakit, Vachiraporn Kunrangseesomboon, Supamongkon Muchmee, Siriwimon Ratprasert, Pruksapon Tangchainavaphum, Saran Dechprapatsorn, Siriwimon Ratprasert, Apasri Suksamran, Apimit Rojchanawatsirivech, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.