Have a personal or library account? Click to login
Alkaline disinfection of urban wastewater and landfill leachate by wood fly ash Cover

Alkaline disinfection of urban wastewater and landfill leachate by wood fly ash

Open Access
|Dec 2014

References

  1. 1. Demeyer A, Voundi Nkana JC, Verloo MG. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 2001;77:287-95. doi: 10.1016/S0960-8524(00)00043-210.1016/S0960-8524(00)00043-2
  2. 2. Väätäinen K, Sirparanta E, Räisänen M, Tahvanainen T. The costs and profitability of using granulated wood ash as a forest fertilizer in drained peatland forests. Biomass Bioenerg 1;35:3335-41.doi:10.1016/j . biombioe.2010.09.006
  3. 3. Pitman RM. Wood ash use in forestry - a review of the environmental impacts. Forestry 2006;79:563-88. doi: 10.1093/forestry/cpl041.10.1093/forestry/cpl041
  4. 4. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the composition and application of biomass ash.
  5. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013;105:19-39. doi: 10.1016/j.fuel.2012.10.00110.1016/j.fuel.2012.10.001
  6. 5. Siddique R. Utilization of wood ash in concrete manufacturing.
  7. Resour Conserv Recycl 2012;67:27-33. doi: 10.1016/j. resconrec.2012.07.004
  8. 6. Johnson A, Catalan LJJ, Kinrade SD. Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture. Fuel 2010;89:3042-50. doi: 10.1016/j.fuel.2010.05.02710.1016/j.fuel.2010.05.027
  9. 7. Ramos T, Matos AM, Sousa-Coutinho J. Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Constr Build Mater 2013;49:343-51. doi: 10.1016/j.conbuildmat.2013.08.02610.1016/j.conbuildmat.2013.08.026
  10. 8. Sharma M, Khan AA, Puri SK, Tuli DK. Wood ash as a potential heterogeneous catalyst for biodiesel synthesis.
  11. Biomass Bioenergy 2012;41:94-106. doi: 10.1016/j. biombioe.2012.02.017
  12. 9. Lu SG, Bai SQ, Zhu L, Shan HD. Removal mechanism of phosphate from aqueous solution by fly ash. J Hazard Mater 2009;161:95-101. doi: 10.1016/j.jhazmat.2008.02.12310.1016/j.jhazmat.2008.02.12318434007
  13. 10. Chen J, Kong H, Wu D, Chen X, Zhang D, Sun Z. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J Hazard Mater 2007;B139:293-300. PMID: 1686093110.1016/j.jhazmat.2006.06.03416860931
  14. 11. Pengthamkeerati P, Satapanajaru T, Chularuengoaksorn P. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel 2008;87:2469-76. doi: 10.1016/j.fuel.2008.03.01310.1016/j.fuel.2008.03.013
  15. 12. Fitzmorris KB, Reimers RS, Oleszkiewicz JA, Little MD. Pathogen inactivation by a closed alkaline systems. In: Proceedings of the Water Environment Federation; WEFTEC 2006, Session 61 through Session 70 [displayed 22 October 2014]. Available at http://www.environmental-expert.com/Files%5C5306%5Carticles%5C13128%5C429.pdf
  16. 13. DD CEN/TS 15290:2006. Solid biofuels. Determination of major elements. The European Committee for Standardization (CEN). ISBN 0-580-48224-3
  17. 14. ASTM D 516-02. Standard test method for sulfate ion in water. American Society for Testing and Materials (ASTM). doi: 10.1520/D0516-0210.1520/D0516-02
  18. 15. HACH Company. DR 2500 Spectrophotometer, Procedure manual. Loveland (CO): HACH Co; 2006.
  19. 16. European Biomass Association. Wood Fuels Handbook, 2008 [displayed 22 October 2014]. Available at http://www.aebiom.org/IMG/pdf/WOOD_FUELS_HANDBOOK_BTC_EN.pdf
  20. 17. Koukouzas N, Hamalainen J, Papanikolaou D, Tourunen A, Jantti T. Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal,wood chips and their blends. Fuel 2007;86:2186-93. doi: 10.1016/j.fuel.2007.03.03610.1016/j.fuel.2007.03.036
  21. 18. Blinova I, Bityukova L, Kasemets K, Ivask A, Käkinen A, Kurvet I, Bondarenko O, Kanarbik L, Sihtmäe M, Aruoja V, Schvede H, Kahru A. Environmental hazard of oil shale combustion fly ash. J Hazard Mater 2012;229-230:192-200. doi: 10.1016/j.jhazmat.2012.05.09510.1016/j.jhazmat.2012.05.09522717068
  22. 19. Nester EW, Anderson DG, Evans Roberts Jr. C, Pearsall NN, Nester MT. Microbiology: A Human Perspective. 4th ed. New York: The McGraw-Hill Companies, Inc.; 2004.
  23. 20. Sorokin DY, Tourova TP, Schmid M, Wagner M, Koops HP, Kuenen JG, Jetten M. Isolation and properties of obligately chemolitoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 2001;176:170-7. doi: 10.1007/ s00203010031010.1007/s00203010031011511864
  24. 21. Sorokin DY. Is there a limit for high-pH life? Int J Syst Evol Microbiol 2005;55:1405-6. PMID: 1601445810.1099/ijs.0.63737-016014458
  25. 22. Welch RA. The genus Escherichia. In: Dworkin M, editor. Prokaryotes. Vol. 6: Proteobacteria: Gamma Subclass. New York (NY): Springer Science+Business Media, LLC; 2006. p. 60-71.10.1007/0-387-30746-X_3
  26. 23. McHugh CP, Zhang P, Michalek S, Eleazer PD. pH required to kill Enterococcus faecalis in vitro. J Endodont 2004;30:218-9. doi: 10.1097/00004770-200404000-0000810.1097/00004770-200404000-0000815085049
  27. 24. Meckes MC, Rhodes ER. Evaluation of bacteriological indicators of disinfection for alkaline treated biosolids. J Environ Eng Sci 2004;3:231-6. doi: 10.1139/s04-00810.1139/s04-008
  28. 25. Brewster J, Reimers RS, Abu-Orf M, Bowman D, Lagasse P, Amy B, Oleskiewicz JA, Coombs KM, Fogarty E. Anoxic low-lime and fly ash post-disinfection of anaerobically digested sludge to class A levels. In: Proceedings of the Water Environment Federation, WEFTEC 2002, Session 81 through S e s s i o n 8 9 , p . 1 7 1 - 8 4 . d o i : h t t p : / / d x . d o i . org/10.2175/19386470278416257010.2175/193864702784162570
  29. 26. Reijnders L. Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recy 2005;43:313-36. doi: 10.1016/j.resconrec.2004.06.00710.1016/j.resconrec.2004.06.007
  30. 27. Wang S, Wu H. Environmental-benign utilization of fly ash as low-cost adsorbents. J Hazard Mater 2006;136:482-501. PMID: 1653095210.1016/j.jhazmat.2006.01.06716530952
  31. 28. Samaras P, Papadimitriou CA, Haritou I, Zouboulis AI. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime. J Hazard Mater 2008;154:1052-9. doi: 10.1016/j.jhazmat.2007.11.01210.1016/j.jhazmat.2007.11.01218093729
  32. 29. Grisey E, Belle E, Dat J, Mudry J, Aleya L. Survival of pathogenic and indicator organisms in groundwater and landfill leachate through coupling bacterial enumeration with tracer tests. Desalination 2010;261:162-8. doi: 10.1016/j. desal.2010.05.007
  33. 30. Umar M, Abdul Aziz H, Suffian Yusoff M. Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination 2011;274:278-83. doi: 10.1016/j.desal.2011.02.02310.1016/j.desal.2011.02.023
  34. 31. Tofant A, Farkaš A, Hrenović J, Rožić M, Tisma S. Leachates disinfection at Jakuševec waste dump. In: Central European Symposium on Industrial Microbiology and Microbial Ecology; 17-22 Sep 2007; Zadar, Croatia. Book of abstracts.
  35. 32. Zhaoa R, Guptab A, Novak JT, Goldsmith CD, Driskill N. Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works (POTWs,). J Hazard Mater 2013;258-259:1-9. doi: 10.1016/j.jhazmat.2013.04.02610.1016/j.jhazmat.2013.04.026
  36. 33. Ugurlu A, Salman B. Phosphorus removal by fly ash. Environ Int 1998;24:911-8. doi: 10.1016/S0160-4120(98)00079-810.1016/S0160-4120(98)00079-8
  37. 34. Can MY, Yildiz E. Phosphate removal from water by fly ash: Factorial experimental design. J Hazard Mater 2006;B135:165-70. PMID: 1635978710.1016/j.jhazmat.2005.11.036
  38. 35. Henze M, Comeau Y. Wastewater characterization. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, editors. Biological Wastewater Treatment: Principles, Modelling and Design. London: IWA Publishing; 2008. p. 33-53.10.2166/9781780401867
  39. 36. Jellali S, Wahab MA, Anane M, Riahi K, Bousselmi L. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions. J Hazard Mater 2010;184:226-33. doi: 10.1016/j.jhazmat.2010.08.02610.1016/j.jhazmat.2010.08.026
  40. 37. Ragheb SM. Phosphate removal from aqueous solution using slag and fly ash. HBRC J 2013;9:270-5. 10.1016/j. hbrcj.2013.08.00510.1016/j.hbrcj.2013.08.005
  41. 38. Pal S, Joardar J, Song JM. Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use. Environ Sci Technol 2006;40:6091-7. doi: 10.1021/es800936k landfill leachate through coupling bacterial enumeration with tracer tests. Desalination 2010;261:162-8. doi: 10.1016/j. desal.2010.05.007
  42. 30. Umar M, Abdul Aziz H, Suffian Yusoff M. Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination 2011;274:278-83. doi: 10.1016/j.desal.2011.02.02310.1016/j.desal.2011.02.023
  43. 31. Tofant A, Farkaš A, Hrenović J, Rožić M, Tisma S. Leachates disinfection at Jakuševec waste dump. In: Central European Symposium on Industrial Microbiology and Microbial Ecology; 17-22 Sep 2007; Zadar, Croatia. Book of abstracts.
  44. 32. Zhaoa R, Guptab A, Novak JT, Goldsmith CD, Driskill N. Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works (POTWs,). J Hazard Mater 2013;258-259:1-9. doi: 10.1016/j.jhazmat.2013.04.02610.1016/j.jhazmat.2013.04.026
  45. 33. Ugurlu A, Salman B. Phosphorus removal by fly ash. Environ Int 1998;24:911-8. doi: 10.1016/S0160-4120(98)00079-810.1016/S0160-4120(98)00079-8
  46. 34. Can MY, Yildiz E. Phosphate removal from water by fly ash: Factorial experimental design. J Hazard Mater 2006;B135:165-70. PMID: 1635978710.1016/j.jhazmat.2005.11.03616359787
  47. 35. Henze M, Comeau Y. Wastewater characterization. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, editors. Biological Wastewater Treatment: Principles, Modelling and Design. London: IWA Publishing; 2008. p. 33-53.10.2166/9781780401867
  48. 36. Jellali S, Wahab MA, Anane M, Riahi K, Bousselmi L. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions. J Hazard Mater 2010;184:226-33. doi: 10.1016/j.jhazmat.2010.08.02610.1016/j.jhazmat.2010.08.02620817398
  49. 37. Ragheb SM. Phosphate removal from aqueous solution using slag and fly ash. HBRC J 2013;9:270-5. 10.1016/j. hbrcj.2013.08.00510.1016/j.hbrcj.2013.08.005
  50. 38. Pal S, Joardar J, Song JM. Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use. Environ Sci Technol 2006;40:6091-7. doi: 10.1021/es800936k 10.1021/es800936k18589485
DOI: https://doi.org/10.2478/10004-1254-65-2014-2546 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 365 - 375
Submitted on: Jun 1, 2014
Accepted on: Nov 1, 2014
Published on: Dec 30, 2014
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Tomislav Ivanković, Jasna Hrenović, Grigorios Itskos, Nikolaos Koukouzas, Davor Kovačević, Jelena Milenković, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.