Have a personal or library account? Click to login
Formal- and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis Cover

Formal- and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis

Open Access
|Jul 2017

References

  1. 1. Khosravi-Darani K., Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Eng Q 2015; 29(2): 275-285.10.15255/CABEQ.2014.2260
  2. 2. Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I. Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 2015; 90(7): 1209-1221. 10.1002/jctb.4685
  3. 3. Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Appl Food Biotechnol 2014; 1(1): 3-15.
  4. 4. Ong SY, Sudesh K. Effects of polyhydroxyalkanoate degradation on soil microbial community. Polym Degrad Stab 2016; 131: 9-19.10.1016/j.polymdegradstab.2016.06.024
  5. 5. Berezina N, Yada B, Lefebvre R. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator. New Biotechnol 2015; 32(1): 47-53.10.1016/j.nbt.2014.09.003
  6. 6. Jendrossek D, Pfeiffer D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3‐hydroxybutyrate). Environ Microbiol 2014; 16(8): 2357-2373.10.1111/1462-2920.12356
  7. 7. Masood F, Yasin T, Hameed A. Polyhydroxyalkanoates-what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 2015; 35(4): 514-521.10.3109/07388551.2014.913548
  8. 8. Obruca S, Sedlacek P, Mravec F, Samek O, Marova, I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 2016; 100(3): 1365-1376.10.1007/s00253-015-7162-4
  9. 9. Reddy CSK, Ghai R, Kalia V. Polyhydroxyalkanoates: an overview. Biores Technol 2003; 87(2): 137-146.10.1016/S0960-8524(02)00212-2
  10. 10. Steinbuchel A. Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 2001; 1(1): 1-24.10.1002/1616-5195(200101)1:1<;1::AID-MABI1>3.0.CO;2-B
  11. 11. Keshavarz T, Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 2010; 13(3): 321-326.10.1016/j.mib.2010.02.006
  12. 12. Chen GQ, Hajnal I. The ‘PHAome’. Trends Biotechnol 2015; 33(10): 559-564.
  13. 13. Koller M, Maršalek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.10.1016/j.nbt.2016.05.001
  14. 14. Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H. LCA of PHA Production-Identifying the Ecological Potential of Bio-plastic. Chem Biochem Eng Q 2015; 29(2): 299-305.10.15255/CABEQ.2014.2262
  15. 15. Novak M, Koller M, Braunegg M, Horvat P. Mathematical modelling as a tool for optimized PHA production. Chem Biochem Eng Q 2015; 29(2): 183-220.10.15255/CABEQ.2014.2101
  16. 16. Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 2015; 29(2): 157-172. 10.15255/CABEQ.2014.2255
  17. 17. Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M. High cell-density production of poly (3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 2017; 37(A): 117-122.10.1016/j.nbt.2016.06.1461
  18. 18. Luo HP, Kemoun A, Al-Dahhan MH, Sevilla JF, Sanchez JG, Camacho FG, Grima EM. Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT. Chem Eng Sci 2003; 58(12): 2519-2527.10.1016/S0009-2509(03)00098-8
  19. 19. Dionisi D, Majone M, Vallini G, Di Gregorio S, Beccari M. Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnol Bioeng 2006; 93(1): 76-88.10.1002/bit.2068316224790
  20. 20. Koller M, Muhr A. Continuous production mode as a viable process- engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem Biochem Eng Q 2014; 28(1): 65-77.
  21. 21. Koller M, Braunegg G. Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2015; 2(2): 94-121.10.3390/bioengineering2020094559719528955015
  22. 22. Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K. Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 1995: 41(13): 239-248.10.1139/m95-192
  23. 23. Moser A (1988) Bioprocess technology: kinetics and reactors. Springer, New York10.1007/978-1-4613-8748-0
  24. 24. Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 2001; 91(2): 295-304.10.1007/s00253-011-3260-0
  25. 25. Patnaik PR. Perspectives in the Modeling and Optimization of PHB Production by Pure and Mixed Cultures. Cit Rev Biotechnol 2005: 25(3); 153-171. 10.1080/07388550500301438
  26. 26. Koller M, Horvat P, Hesse P, Bona R, Kutschera C, Atlić A., Braunegg G. Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioproc Biosyst Eng 2006; 29(5-6): 367-377.10.1007/s00449-006-0084-x
  27. 27. Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M. Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Biores Technol 2013; 133: 482-494.10.1016/j.biortech.2013.01.126
  28. 28. Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 2016; 100(23): 10065-10080.10.1007/s00253-016-7844-6
  29. 29. Horvat P, Špoljarić IV, Lopar M, Atlić A, Koller M, Braunegg G. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc. Biosyst. Eng. 2013; 36(9): 1235-1250.
  30. 30. Luedeking R, Piret EL. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1959; 1(4): 393-412.10.1002/jbmte.390010406
  31. 31. Megee III, RD, Drake JF, Fredrickson AG, Tsuchiya HM. Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei. Can J Microbiol 1972; 18(11): 1733-1742.10.1139/m72-269
  32. 32. Mankad T, Nauman EB. Modeling of microbial growth under dual limitations. The Chem Eng J 1992; 48(2): B9-B11.10.1016/0300-9467(92)85016-3
  33. 33. Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Horvat P. In silico optimization and low structured kinetic model of poly[(R)-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol. J Biotechnol 2013; 168(4): 625-635.10.1016/j.jbiotec.2013.08.01924001933
  34. 34. Lopar M, Špoljarić IV, Atlić A, Koller M, Braunegg G, Horvat P. Fivestep continuous production of PHB analyzed by elementary flux modes, yield space analysis and high structured metabolic model. Biochem Eng J 2013; 79, 57-70.10.1016/j.bej.2013.07.003
  35. 35. Lopar M, Špoljarić IV, Cepanec N, Koller M, Braunegg G, Horvat P. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis. J Ind Microbiol Biotechnol 2014; 41(6): 913-930.10.1007/s10295-014-1439-y24715530
  36. 36. Krzyzanek V, Hrubanova K, Samek O, Obruca S, Marova I, Bernatova S, Siler M, Zemanek P. Cryo-SEM and Raman Spectroscopy study of the involvement of polyhydroxyalkanoates in stress response of bacteria. Microsc Microan 2015; 21(S3): 183-184.10.1017/S1431927615001713
  37. 37. Mravec F, Obruca S, Krzyzanek V, Sedlacek P, Hrubanova K, Samek O, Kucera D, Benesova P, Nebesarova J. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol Lett 2016; 363(10), fnw094.10.1093/femsle/fnw09427190240
  38. 38. Wang Y, Yin J, Chen GQ. Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 2014; 30: 59-65.10.1016/j.copbio.2014.06.00124976377
Language: English
Page range: 203 - 211
Published on: Jul 20, 2017
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Martin Koller, Denis Vadlja, Gerhart Braunegg, Aid Atlić, Predrag Horvat, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.