Have a personal or library account? Click to login
Drained and forgotten peat extraction sites: economic and carbon impacts of peat and water loss in spontaneously forested Lithuanian peatlands Cover

Drained and forgotten peat extraction sites: economic and carbon impacts of peat and water loss in spontaneously forested Lithuanian peatlands

Open Access
|Dec 2025

References

  1. Agricultural Data Center [ŽŪDC]. (2025). Dirv_DR10LT – spatial data set of soil of the territory of the Republic of Lithuania at scale 1:10 000 [Data set]. http://data.europa.eu/88u/dataset/https-data-gov-lt-datasets-2965-
  2. Boers, A. M., Frieswyk, C. B., Verhoeven, J. T. A., & Zedler, J. B. (2006). Contrasting approaches to the restoration of diverse vegetation in herbaceous wetlands. In R. Bobbink, B. Beltman, J. T. A. Verhoeven, & D. F. Whigham (Eds.), Wetlands: functioning, biodiversity conservation, and restoration (pp. 225–246). Springer.
  3. Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. EU Biodiversity Strategy for 2030: Bringing nature back into our lives (COM/2020/380 final). Brussels, 20.5.2020.
  4. Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. EU Soil Strategy for 2030: Reaping the benefits of healthy soils for people, food, nature and climate (COM/2021/699 final). Brussels, 17.11.2021.
  5. Craft, C. (2015). Creating and restoring wetlands: From theory to practice. Elsevier.
  6. Ghezelayagh, P., Oleszczuk, R., Stachowicz, M., Eini, M. R., Kamocki, A., Banaszuk, P., & Grygoruk, M. (2024). Developing a remote-sensing-based indicator for peat soil vertical displacement: A case study in the Biebrza Valley, Poland. Ecological Indicators, 166, 112305. https://doi.org/10.1016/j.ecolind.2024.112305
  7. Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1(2), 182–195. https://doi.org/10.2307/1941811
  8. Grigaliunas, V., Jarašius, L., Zableckis, N., Dapkuniene, K., Manton, M., Kazanaviciute, V., & Sendžikaitė, J. (2023). Miškuose esančių pažeistų durpynų sutvarkymo galimybių studija. Miško Mokslo Darbas. https://am.lrv.lt/media/viesa/saugykla/2024/1/UeLJMXgcIl8.pdf
  9. Grzywna, A. (2017). The degree of peatland subsidence resulting from drainage of land. Environmental Earth Sciences, 76(16), 559. https://doi.org/10.1007/s12665-017-6869-1
  10. Haapalehto, T., Juutinen, R., Kareksela, S., Kuitunen, M., Tahvanainen, T., Vuori, H., & Kotiaho, J. S. (2017). Recovery of plant communities after ecological restoration of forestry-drained peatlands. Ecology and Evolution, 7(19), 7848–7858. https://doi.org/10.1002/ece3.3243
  11. Hammer, Ø. (2023). Reference manual. Paleontological Statistics (PAST) Version 4.13. Natural History Museum, University of Oslo.
  12. Hofer, B., Huwald, G., & Lehmann, J. (2012). Studie zur Situation des Torfabbaus im Baltikum. TELMA-Berichte der Deutschen Gesellschaft für Moor- und Torfkunde, 42, 43–56. https://e-docs.geo-leo.de/server/api/core/bitstreams/3c3cfebd-c05b-440d-b100-51841a51c1fc/content
  13. Holden, J. (2005). Peatland hydrology and carbon release: Why small-scale process matters. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2891–2913. https://doi.org/10.1098/rsta.2005.1671
  14. Ikkala, L., Ronkanen, A. K., Utriainen, O., Kløve, B., & Marttila, H. (2021). Peatland subsidence enhances cultivated lowland flood risk. Soil and Tillage Research, 212, 105078. https://doi.org/10.1016/j.still.2021.105078
  15. IndexBox. (2024). Lithuania – Peat – Market Analysis, Forecast, Size, Trends and Insights. https://www.indexbox.io/store/lithuania-peat-market-analysis-forecast-size-trends-and-insights/
  16. Intergovernmental Panel on Climate Change [IPCC]. (2014). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC. https://www.ipcc-nggip.iges.or.jp/public/wetlands/
  17. International Carbon Action Partnership [ICAP]. (2025) ICAP Allowance Price Explorer. https://icapcarbonaction.com/en/ets-prices
  18. Jarašius, L., Etzold, J., Truus, L., Purre, A-H., Sendžikaitė, J., Strazdiņa, L., Zableckis, N., Pakalne, M., Bociąg, K., Ilomets, M., Herrmann, A., Kirschey, T., Pajula, R., Pawlaczyk, P., Chlost, I., Cieśliński, R., Gos, K., Libauers, K., Sinkevičius, Z., & Jurema, L. (2022). Handbook for assessment of greenhouse gas emissions from peatlands. Lithuanian Fund for Nature.
  19. Jarašius, L., Lygis, V., Sendžikaitė, J., & Pakalnis, R. (2015). Effect of different hydrological restoration measures in Aukštumala raised bog damaged by peat harvesting activities. Baltic Forestry, 21(2), 192–203.
  20. Joosten, H. (2009). 30 human impacts: Farming, fire, forestry and fuel. In E. Maltby & T. Barker (Eds.), The wetlands handbook. Blackwell Science.
  21. Joosten, H., & Clarke, D. (2002). Wise use of mires and peatlands: Background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society.
  22. Jurasinski, G., Barthelmes, A., Byrne, K. A., Chojnicki, B. H., Christiansen, J. R., Decleer, K., Fritz, Ch., Günther, A. B., Huth, V., Joosten, H., Juszczak, R., Juutinen, S., Kasimir, A., Klemedtsson, L., Koebsch, F., Kotowski, W., Kull, A., Lamentowicz, M., Lindgren, A., Lindsay, R., Linkevičienė, Lohila, A., Mander, Ü., Manton, M., Minkkinen, K., Peters, J., Renou-Wilson, F., Sendžikaitė, J., Šimanauskienė, R., Taminskas, J., Tanneberger, F., Tegetmeyer, C., Diggelen, R. van, Vasander, H., Wilson, D., Zableckis, N., Zak, D. H., & Couwenberg, J. (2024). Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law. Ambio, 53(7), 970–983. https://doi.org/10.1007/s13280-024-02016-5
  23. Kamocki, A. K., Manton, M., Rudbeck Jepsen, M., Stachowicz, M., Antochów, A., Grygoruk, M., & Banaszuk, P. (2025). Estimations of GHG emissions from drained peatlands: Accountability in the trans-border Neman River basin. https://dx.doi.org/10.2139/ssrn.5144113
  24. Karofeld, E., Jarašius, L., Priede, A., & Sendžikaitė, J. (2017). On the after-use and restoration of abandoned extracted peatlands in the Baltic countries. Restoration Ecology, 25(2), 293–300. https://doi.org/10.1111/rec.12436
  25. Kohlenberg, A. J., Turetsky, M. R., Thompson, D. K., Branfireun, B. A., & Mitchell, C. P. (2018). Controls on boreal peat combustion and resulting emissions of carbon and mercury. Environmental Research Letters, 13(3), 035005. https://doi.org/10.1088/1748-9326/aa9ea8
  26. Koska, I., Succow, M., Clausnitzer, U., Timmermann, T., & Roth, S. (2001). Vegetationskundliche Kennzeichnung von Mooren (topische Betrachtung). In M. Succow & H. Joosten (Eds.), Landschaftsökologische Moorkunde (pp. 112–184). Schweizerbart.
  27. Leifeld, J. & Menichetti, L. (2018). The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03406-6
  28. Lithuanian State Forest Service [VMU]. (2021). Cadastral GIS database.
  29. Liu, H., Price, J., Rezanezhad, F., & Lennartz, B. (2020). Centennial-scale shifts in hydrophysical properties of peat induced by drainage. Water Resources Research, 56(10), e2020WR027538. https://doi.org/10.1029/2020WR027538
  30. Makrickas, E., Manton, M., Angelstam, P., & Grygoruk, M. (2023). Trading wood for water and carbon in peatland forests? Rewetting is worth more than wood production. Journal of Environmental Management, 341, 117952. https://doi.org/10.1016/j.jenvman.2023.117952
  31. Mander, Ü., Espenberg, M., Melling, L., & Kull, A. (2024). Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon. Biogeochemistry, 167(4), 523–543. https://doi.org/10.1007/s10533-023-01103-1
  32. Manton, M., Makrickas, E., Banaszuk, P., Kołos, A., Kamocki, A., Grygoruk, M., Stachowicz, M., Jarašius, L., Zableckis, N., Sendžikaitė, J., Peters, J., Napreenko, M., Wichtmann, W., & Angelstam, P. (2021). Assessment and spatial planning for peatland conservation and restoration: Europe’s trans-border Neman River basin as a case study. Land, 10(2), 174. https://doi.org/10.3390/land10020174
  33. Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands. Wiley.
  34. Oleszczuk, R., Łachacz, A., & Kalisz, B. (2022). Measurements versus estimates of soil subsidence and mineralization rates at peatland over 50 years (1966–2016). Sustainability, 14(24), 16459. https://doi.org/10.3390/su142416459
  35. Paavilainen, E., & Päivänen, J. (1995). Peatland forestry: Ecology and principles. Springer. https://doi.org/10.1007/978-3-662-03125-4
  36. Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., & Stringer, L. (2008). Assessment on peatlands, biodiversity and climate change: Main report. Global Environment Centre, Kuala Lumpur and Wetlands International.
  37. Patel, N., Ieviņa, B., Kažmēre, D., Feofilovs, M., Kamenders, A., & Romagnoli, F. (2025). Towards resilient peatlands: integrating ecosystem-based strategies, policy frameworks, and management approaches for sustainable transformation. Sustainability, 17(8), 3419. https://doi.org/10.3390/su17083419
  38. Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU. OJ L 156, 19.6.2018, pp. 1–25.
  39. Regulation of the European Parliament and of the Council on Nature Restoration and Amending Regulation (EU) 2022/869. OJ L, 2024/1991, 29.7.2024.
  40. Rydin, H., Jeglum, J. K. & Bennett, K.D. (2013). The Biology of Peatlands. Oxford University Press.
  41. Saulėnas, V. (1993). Durpės telkinių tyrimų ir išteklių klasifikavimo rekomendacijos. Valstybinė geologijos tarnyba prie statybos ir urbanistikos ministerijos. https://lgt.lrv.lt/media/viesa/saugykla/2024/2/yF1ekPwJPoI.pdf
  42. Stachowicz, M., Manton, M., Abramchuk, M., Banaszuk, P., Jarašius, L., Kamocki, A., Povilaitis, A., Samerkhanova, A., Schäfer, A., Sendžikaitė, J., Wichtmann, W., Zableckis, N., & Grygoruk, M. (2022). To store or to drain – To lose or to gain? Rewetting drained peatlands as a measure for increasing water storage in the transboundary Neman River Basin. Science of The Total Environment, 829, 154560. https://doi.org/10.1016/j.scitotenv.2022.154560
  43. Succow, M., & Stegmann, H. (2001). Succow’s peatland classification. Greifswald University.
  44. Tanneberger, F., & Wichtmann, W. (Eds.). (2011). Carbon credits from peatland rewetting: climate, biodiversity, land use. Schweizerbart Science Publishers.
  45. Turetsky, M. R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11–14. https://doi.org/10.1038/ngeo2325
  46. United Nations Environment Programme [UNEP]. (2022). Global peatlands assessment: The state of the world’s peatlands. Evidence for Action toward the Conservation, Restoration, and Sustainable Management of Peatlands. Global Peatlands Initiative. United Nations Environment Programme. https://doi.org/10.59117/20.500.11822/41222
  47. Valatka, S., Stoškus, A., & Pileckas, M. (2018). Lietuvos Durpynai. Kiek Jų Turime, Ar Racionaliai Naudojame? Gamtos paveldo fondas.
  48. Valstybinė saugomų teritorijų tarnyba prie Aplinkos ministerijos [VSTT]. (2025). Biologinės Įvairovės Duomenų Bazė. https://www.biomon.lt/
  49. Wichmann, S., & Nordt, A. (2024). Unlocking the potential of peatlands and paludiculture to achieve Germany’s climate targets: obstacles and major fields of action. Frontiers in Climate, 6, 1380625. https://doi.org/10.3389/fclim.2024.1380625
  50. Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J. G., Chen, Y., Velde, I. R. van der, Aben, I., Chuvieco, E., Davis, S. J., Deeter, M., Hong, Ch., Kong, Y., Li, H., Lin, X., He, K., & Zhang, Q. (2023). Record-high CO2 emissions from boreal fires in 2021. Science, 379(6635), 912–917. https://doi.org/10.1126/science.ade0805
DOI: https://doi.org/10.22630/srees.10809 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 376 - 397
Submitted on: Sep 16, 2025
|
Accepted on: Nov 11, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services

© 2025 Michael Manton, Vaidotas Grigaliūnas, Leonas Jarašius, Jūratė Sendžikaitė, Gabija Tamulaitytė, Maria Grodzka-Łukaszewska, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.