Have a personal or library account? Click to login
Clayey Sand–Nonwoven Geotextile Interface Characterisation Through Gradient Ratio Test Cover

Clayey Sand–Nonwoven Geotextile Interface Characterisation Through Gradient Ratio Test

By: Anna Markiewicz  
Open Access
|Aug 2022

References

  1. ASTM International [ASTM] (2017). Standard Test Method for Measuring the Filtration Compatibility of Soil-Geotextile Systems (ASTM D5101-12). ASTM International.
  2. Atmatzidis, D. K., Fitzpatrick, J. A. &Fornek, J. T.(1982). Evaluation of Geotextiles as Liquid Filter. In Proceedings of the 2nd International Conference on Geotextiles, Las Vegas, USA (pp. 73–78). St. Paul, Minn.: Industrial Fabrics Association International, International Geotextile Society.
  3. Esmaeili, M., Salajegheh, M. & Famenin, S. J. (2019). Experimental assessment of geotextile serviceability lifetime as ballasted railway filter focusing on clogging phenomenon. Construction and Building Materials, 211, 675–687. https://doi.org/10.1016/j.conbuildmat.2019.03.281
  4. Fannin, R. J. (2015). The use of Gradient Ratio test for the selection of geotextiles in filtration. Geosynthetics. Geotechnical News, Canadian Geotechnical Society, 33–36.
  5. Fannin, R. J., Vaid, Y. P. & Shi, Y. C. (1994). A critical evaluation of the gradient ratio test. Geotechnical Testing Journal, 17 (1), 35–42.
  6. Gardoni, M. G. (2000). Hydraulic and Filter Characteristics of Geosynthetics Under Pressure and Clogging Conditions (PhD thesis). University of Brasilia, Brasilia.
  7. Haliburton, T. A. & Wood, P. D. (1982). Evaluation of the US Army Corps of Engineers gradient ratio test for geotextile performance. In Proceedings of the 2nd International Conference on Geotextiles, Las Vegas, USA (pp. 97–101). St. Paul, Minn.: Industrial Fabric Association International.
  8. Heibaum, M., Fourie, A., Girard, H., Karunaratne, G. P., Laufleur, J. & Palmeira, E. M. (2006). Hydraulic applications of geosynthetics. In J. Kuwano & J. Koseki (Eds) Geosynthetics: proceedings of the 8th International Conference on Geosynthetics (8 ICG), Yokohama, Japan (Vol. 1, pp. 79–120). Rotterdam: Millpress.
  9. Hong, Y. S., Wu, Ch. S., Yang, Z. Y., Lee, W. F. & Wang, R. H. (2011). The load type influence on the filtration behavior of soil-nonwoven geotextile composite. Tamkang Journal of Science and Engineering, 14 (1), 15–24.
  10. Kenney, T. C. & Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22, 215–225. https://doi.org/10.1139/t85-029
  11. Kezdi, A. (1979). Soil Physics-Selected Topics. Amsterdam: Elsevier Scientific Publishing.
  12. Kohata, Y., Tanaka, M., Sato, O. & Hirai, T. (2006). Clogging evaluation on cross-plane flow performance of geotextile filter. Geosynthetics, 14, 561–564.
  13. Markiewicz, A., Kiraga, M. & Koda, E. (2022-02-24). Influence of physical clogging on filtration performance of soil-geotextile interaction. Geosynthetics International, 00033. https://doi.org/10.1680/jgein.21.00033
  14. Miszkowska, A., Lenart, S. & Koda, E. (2017). Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions. Water, 9 (9), 660. https://doi.org/10.3390/w9090660
  15. Moraci, N. (2010). Geotextile filter: Design, characterization and factors affecting clogging and blinding limit states. In E. M. Palmegiano (Ed.) Proceedings of the 9th International Conference on Geosynthetics: geosynthetics, advanced solutions for a challenging world, Guarujá, Brazil (pp. 413–435). SaÞo Paulo: Brazilian Chapter of the International Geosynthetics Society (IGS-Brazil).
  16. Nishigata, T., Fannin, R. J. & Vaid, Y. P. (2000). Blinding and clogging of a nonwoven geotextile. Soils and Foundations, 40 (4), 121–127. https://doi.org/0.3208/sandf.40.4_12110.3208/sandf.40.4_121
  17. Palmeira, E. M., Gardoni, M. G. & Bessa da Luz, D. W. (2005). Soil-geotextile filter interaction under high stress levels in the gradient ratio test. Geosynthetics International, 12 (4), 162–175. https://doi.org/10.1680/gein.2005.12.4.162
  18. Polski Komitet Normalizacyjny [PKN] (2007). Geosyntetyki. Metoda badań do wyznaczania masy powierzchniowej geotekstyliów i wyrobów pokrewnych Geosynthetics. Test method for the determination of mass per unit area of geotextiles and geotextile-related products](PN-EN ISO 9864:2007). Warszawa: Polski Komitet Normalizacyjny.
  19. Polski Komitet Normalizacyjny [PKN] (2015). Geosyntetyki. Badanie wytrzymałości na rozciąganie metodą szerokich próbek Geosynthetics. Wide-width tensile test](PN-EN ISO 10319:2015-08). Warszawa: Polski Komitet Normalizacyjny.
  20. Polski Komitet Normalizacyjny [PKN] (2018). Rozpoznanie i badania geotechniczne. Oznaczanie i klasyfikowanie gruntów. Część2: Zasady klasyfikowania Geotechnical and testing. Identification and classification of soil. Part 2: Principles for a classification](PN-EN ISO 14688-2:2018-05). Warszawa: Polski Komitet Normalizacyjny.
  21. Polski Komitet Normalizacyjny [PKN] (2019). Geotekstylia i wyroby pokrewne. Wyznaczanie charakterystyk wodoprzepuszczalności w kierunku prostopadłym do powierzchni wyrobu, bez obciążenia Geotextiles and geotextile-related products. Determination of water permeability characteristics normal to the plane, without load](PN-EN ISO 11058:2019-07). Warszawa: Polski Komitet Normalizacyjny.
  22. Polski Komitet Normalizacyjny [PKN] (2020a). Geosyntetyki. Wyznaczanie grubości przy określonych naciskach. Część1: Warstwy pojedyncze Geosynthetics. Determination of thickness at specified pressures. Part 1: Single layers](PN-EN ISO 9863-1:2016-09/A1:2020-05). Warszawa: Polski Komitet Normalizacyjny.
  23. Polski Komitet Normalizacyjny [PKN] (2020b). Geotekstylia i wyroby pokrewne. Wyznaczanie charakterysty-cznej wielkości porów Geotextiles and geotextile-related products. Determination of the characteristic opening size](PN-EN ISO 12956:2020-06). Warszawa: Polski Komitet Normalizacyjny.
  24. Portelinha, F. H. M. & Zornberg, J. G. (2017). Effect of infiltration on the performance of an unsaturated geotextile-reinforced soil wall. Geotextiles and Geomembranes, 45 (3), 211–226. https://doi.org/10.1016/j.geotexmem.2017.02.002
  25. Prasomsri, J. & Takahshi, A. (2020). The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils. Soils and Foundations, 60 (6), 1468–1488. https://doi.org/10.1016/j.sandf.2020.09.008
  26. Rönnqvist, H. & Viklander, P. (2004). On the Kenney-Lau Approach to Internal Stability Evaluation of Soils. Geomaterials, 4, 129–140. https://doi.org/10.4236/gm.2014.44013
  27. Sabiri, N.-E., Caylet, A., Montillet, A., LeCoq, L. & Durkheim, Y. (2020). Performance of nonwoven geotextiles on soil drainage and filtration. European Journal of Environmental and Civil Engineering, 24 (5), 670––688. https://doi.org/10.1080/19648189.2017.1415982
  28. Sherard, J. L. (1979). Sinkholes in Dams of Coarse, Broadly Graded Soils. In Proceedings of the 13th ICOLD Congress, New Delhi, India (Vol. 2, pp. 25–35). Paris: Inter-International Commission on Large Dams.
  29. Veylon, G., Stoltz, G., Meriaux, P., Faure, Y.-H. & Touze-Foltz, N. (2016). PerformanceofgeotextilefiltersafterPerformance of geotextile filters after 18 years’ service in drainage trenches. Geotextiles and Geomembranes, 44, 515–533. https://doi.org/10.1016/j.geotexmem.2016.02.002
  30. Zhou, B., Wang, H., Wang, X. & Ji, J. (2018). Permeability and stability of soilbags in slope protection structures. International Journal of Heat and Technology, 36 (3), 1094–1100. https://doi.org/10.18280/ijht.360341
  31. Zlatinská, L. & Škvarka, J. (2016). Internal suffosion of soils criteria. Roczniki Inżynierii Budowlanej, 16, 17–24.
Language: English
Page range: 31 - 39
Submitted on: Feb 14, 2022
Accepted on: Mar 23, 2022
Published on: Aug 5, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Anna Markiewicz, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.