Have a personal or library account? Click to login
An Overview of Bridge Pier Construction Solutions, Including the Indonesian Approach Cover

An Overview of Bridge Pier Construction Solutions, Including the Indonesian Approach

Open Access
|Jan 2021

References

  1. Abizandhika, H., Wibisono, H. & Bangun, S. (2016). Perencanaan Ulang Jembatan Tukad Bangkung Kabupaten Badung, Bali Dengan Metode Cable Stayed. Jurnal Sains dan Teknologi Teknik Utama, 11 (3), 168–176.
  2. Ahn, I.-S., Chen, S. S. & O’Connor, J. S. (2006). Accelerated bridge pier construction in the U.S.: seismic implications. In Structures Congress 2006. American Society of Civil Engineers. doi: 10.1061/40889(201)7910.1061/40889(201)79
  3. Al-Rousan, R. (2020). Behavior of prefabricated full-depth precast concrete bridge deck panel system: optimum prestress level. Procedia Manufacturing, 44, 607–614. doi: 10.1016/j.promfg.2020.02.24910.1016/j.promfg.2020.02.249
  4. Amin, M. B. A., Sarino, S. & Haki, H. (2017). Floodplain Simulation for Musi River using Integrated 1D/2D Hydrodynamic Model. MATEC Web of Conferences, 101, 05023. doi: 10.1051/matecconf/20171010502310.1051/matecconf/201710105023
  5. Andrić, J. M. & Lu, D.-G. (2016). Risk assessment of bridges under multiple hazards in operation period. Safety Science, 83, 80–92. doi: 10.1016/j.ssci.2015.11.00110.1016/j.ssci.2015.11.001
  6. Armono, H. D. & Budipriyanto, A. (2013). A Study on Local Scouring at Suramadu Bridge Piers for Structural Integrity Monitoring. In Proceedings of the 7th International Conference on Asian and Pacific Coasts (APAC 2013), Indonesia, 24–26.09.2013 (pp. 107–112). Sulawesi Selatan: Hasanuddin University Press.
  7. Artana, W., Sukrawa, M. & Sudarsana, K. (2010). Aspek Perencanaan dan Pelaksanaan Balok Boks Beton Prategang Pada Jembatan Kantilever Seimbang (Kasus Jembatan Tukad Bangkung – Badung – Bali). Paper presented at Civil Engineering National Conference 4th (KonTekS 4), Sanur-Bali, 02–03.06.2010.
  8. Asian Development Bank (2016). Indonesia Country Water Assessment. Retrieved from: https://www.adb.org/sites/default/files/institutional-document/183339/ino-water-assessment.pdf (accessed 08.12.2019).
  9. Auyeung, S., Alipour, A., & Saini, D. (2019). Perform ance--based design of bridge piers under vehicle collision. Engineering Structures, 191, 752–765.10.1016/j.engstruct.2019.03.005
  10. Biliszczuk, J. & Onysyk, J. (2016) Prefabrykacja w mostownictwie. Nowoczesne Budownictwo Inżynieryjne, 6, 66–75.
  11. Chen, W. F. & Duan, L. (2003). Bridge Engineering. Seismic Design. Boca Raton: CRC Press.
  12. Chmielewski, R. (2015). Analiza warunków posadowienia podpór mostów składanych [Analysis of conditions for the foundation of folding bridges pillars]. Modern Engineering, 1, 12–21.
  13. Dąbkowski, L., Skibiński, J. & Żbikowski, A. (1982). Hydrauliczne podstawy projektów wodnomelioracyjnych. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne.
  14. Eitiveni, I. & Sensuse, D. (2012). Implementation of Tile Based Geographic Information System in Indonesia E-Government. International Journal of Computer Science Issues, 9, 156–163.
  15. Esmaeili, T., Dehghani, A. A., Zahiri, A. R. & Suzuki, K. (2009). 3D Numerical simulation of scouring around bridge piers (Case Study: Bridge 524 crosses the Tanana River). World Academy of Science, Engineering and Technology, 58, 1028–1032. doi: 10.5281/zenodo.1074503
  16. Graf, W. H. (1998). Fluvial hydraulics: flow and transport processes in channels of simple geometry. Chichester: John Wiley & Sons.
  17. Guo, X., Badroddin, M. & Chen, Z. (2018). Scour-dependent empirical fragility modelling of bridge structures under earthquakes. Advances in Structural Engineering, 136943321881543, 1–15. doi: 10.1177/136943321881543310.1177/1369433218815433
  18. Hanifah, Y. N., Budipriyanto, A. & Rahardjo, I. P. (2017). Seismic performance evaluation of a pile-supported pier in Aceh, Indonesia. IOP Conference Series: Materials Science and Engineering, 012022. doi: 10.1088/1757-899X/267/1/01202210.1088/1757-899X/267/1/012022
  19. Hassan, Z. F., Karim, I. R. & Al-Shukur, A. (2020) Effect of Interaction between bridge piers on local scouring in cohesive soils. Civil Engineering Journal, 6 (4), 659–669.10.28991/cej-2020-03091498
  20. Imran, I. Hoedajanto, D. & Zarkasi, I. (2014). Bridges in Indonesia: Present and Future. Tokyo-Japan. Retrieved from: http://jsce100.com/international_conf/pdf/forum09.pdf (accessed 08.12.2019).
  21. Jarominiak, A. (2011). Postęp w dziedzinie fundamentowania mostów [Advances in bridge foundation]. Geoinżynieria. Drogi Mosty Tunele, 1 (30), 14–33.
  22. Jarominiak, A. (2016). Zabezpieczenie przed rozmyciem dna cieków przy filarach mostów. Drogownictwo, 10, 303–312.
  23. Jukowski, M. & Bęc, J. (2016). Analiza statyczna i modalna Mostu Solidarności w Płocku [Static and modal analysis of Solidarity Bridge in Płock]. Budownictwo i Architektura, 15, 177–189.
  24. Junaidi, A., Nurhamidah, N. & Daoed, D. (2018). Future flood management strategies in Indonesia. MATEC Web of Conferences, 229, 01014. doi: 10.1051/matecconf/20182290101410.1051/matecconf/201822901014
  25. Krężel, M. & Radziecki, A. (2007). Próba nowego spojrzenia na zastosowanie prefabrykacji w budownictwie mostowym. Drogownictwo, 2, 122–124.
  26. Kusuma, M. S. B., Mohammad, F., Habibi, S. A., Yasin, D. M. & Johan, E. (2020). The influence of the new LRT pier to the sedimentation pattern around Ampera bridge in Musi river, South Sumatera, Indonesia. International Journal of GEOMATE, 18 (69), 159–167. doi: 10.21660/2020.69.1324010.21660/2020.69.13240
  27. Lewandowski, J. B. (1959). Uwagi na temat głębokości wyboju przy filarze. Archiwum Hydrotechniki, 3, 273–287.
  28. Lin, W. & Yoda, T. (2017). Bridge Engineering: Classifications, Design Loading, and Analysis Methods. Oxford: Butterworth–Heinemann.
  29. Markogiannaki, O. & Tegos, I. (2018). A proposal for improving regularity of brigdes with the rocking response of precast piers. Paper presented at 16th European Conference On Earthquake Engineering, 18–21.06.2018, Thessaloniki, Greece.
  30. Matsagar, V., Eslamian, S., Ostad-Ali-Askari, K., Raeisi, M., Lee, G., Pazdar, S. & Bagheri-Basmenji, A. (2018). Bridges. In P.T. Bobrovsky & B. Marker (Eds.), Encyclopedia of Engineering Geology (pp. 74–92). Cham: Springer. doi: 10.1007/978-3-319-12127-7_35-110.1007/978-3-319-12127-7_35-1
  31. Pawitan, H. & Haryani, G. S. (2011). Water resources, sustainability and societal livelihoods in Indonesia. Ecohydrology & Hydrobiology, 11 (3–4), 231–243. doi: 10.2478/v10104-011-0050-310.2478/v10104-011-0050-3
  32. Putra, R. R., Kiyono, J., Ono, Y. & Parajuli, H. R. (2012). Seismic Hazard Analysis For Indonesia. Journal of Natural Disaster Science, 33 (2), 59–70. doi: 10.2328/jnds.33.5910.2328/jnds.33.59
  33. Reis, A. J. & Pedro, J. J. O. (2019). Bridge Design: Concepts and Analysis. Oxford: John Wiley & Sons.10.1002/9781118927595
  34. Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie. Dz.U. 2000 nr 63, poz. 735 [Regulation of Minister of Maritime Economy and Inland Navigation on the technical conditions to be met by road engineering structures and their location. Journal of Laws of the Republic of Poland 2000 No 63, item 735].
  35. Sarminingsih, A., Soekarno, I., Hadihardaja, I. K. & Kusuma, M. S. B. (2014). Flood vulnerability assessment of upper Citarum river basin, West Java, Indonesia. International Journal of Applied Engineering Research, 9 (23), 22921–22940.
  36. Subedi, A. S., Sharma, S., Islam, A. & Lamichhane, N. (2019). Quantification of the effect of bridge pier encasement on headwater elevation using HEC-RAS. Hydrology, 6 (1), 25. doi: 10.3390/hydrology601002510.3390/hydrology6010025
  37. Sumargo, S. & Rusmanto, A. (2020). Moveable bridge inspection in Ancam Port North Kalimantan, Indonesia. IOP Conference Series Materials Science and Engineering, 830 (2), 022046. doi: 10.1088/1757-899X/830/2/02204610.1088/1757-899X/830/2/022046
  38. Supriyadi, B., Siswosukarto, S., & Hadjoh, S. (2017). Stability analysis of variation span and turning angle against width in suspension bridge. In Proceedings of the Fifth International Conference on Advances in Civil, Structural and Mechanical Engineering – CSM 2017 (pp. 17–21). New York: Institute of Research Engineers and Doctor. doi: 10.15224/978-1-63248-132-0-3410.15224/978-1-63248-132-0-34
  39. Taly, N. (1998). Design of Modern Highway Bridges. New York: The McGraw-Hill Companies.
  40. Tandon, M. (2005). Economical design of earthquake-resistant bridges. ISET Journal of Earthquake Technology, 42 (1), 13–20.
  41. Teli, D., Shrestha, K., Chapagain, S. N. & Pathak, S. (2020). Final project report on analysis and design of T-girder bridge at Balkumari, Kathmandu-Lalitpur. Lalitpur: Sagarmatha Engineering College.
  42. Texas Department of Transportation (2019). Hydraulic Design Manual. Texas.
  43. Triatmadja, R., Hijah, S. N. & Nurhasanah, A. (2011). Scouring Around Coastal Structures Due to Tsunami Surge. In Proceedings of the 6th Annual International Workshop & Expo on Sumatra Tsunami Disaster & Recovery 2011 in conjunction with 4th South China Sea Tsunami Workshop, 22–24.11.2011 (pp. 3–18). Tsunami and Disaster Mitigation Research Center (TDMRC).
  44. Tymiński, T. (2010). Hydrauliczne badania modelowe filarów mostowych na przykładzie wybranych mostów Opola [Hydraulic model research on bridge piers based on the example of selected bridges in Opole]. Rocznik Ochrona Środowiska, 12, 879–893.
  45. Vijayasree, B. A., Eldho, T. I., Mazumder, B. S. & Ahmad, N. (2017). Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17 (1), 1–21. doi: 10.1080/15715124. 2017.1394315
  46. Wahyono, E., Tangkilisan, Y. B. & Marihandono, D. (2016). Development of inter-island shipping as a Bridge to Indonesian Archipelago. Journal of Maritime Research, 13 (3), 29–38.
  47. Wang, J. (2000). Piers and Columns. In W.H. Chen & L. Duan (Eds.), Bridge Engineering Handbook (pp. 27–1– –27-24). Boca Raton: CRC Press.
  48. Wang, W., Zhou, K., Jing, H., Zuo, J., Li, P., & Li., Z. (2019). Effects of Bridge Piers on Flood Hazards: A Case Study on the Jialing River in China. Water, 11 (6), 1181. doi: 10.3390/w1106118110.3390/w11061181
  49. Watts, F. & Podolny, W. (1976). Ice loads on brigde piers. Illinois: Federal Highway Administration.
  50. Wei, Z., Dalrymple, R. A., Hérault, A., Bilotta, G., Rustico, E. & Yeh, H. (2015). SPH modeling of dynamic impact of tsunami bore on bridge piers. Coastal Engineering, 104, 26–42. doi: 10.1016/j.coastaleng.2015.06.00810.1016/j.coastaleng.2015.06.008
  51. Wijayanti, P., Zhu, X., Hellegers, P., Budiyono, Y. & Ierland, E. C. van (2016). Estimation of river flood damages in Jakarta, Indonesia. Natural Hazards, 86 (3), 1059–1079. doi: 10.1007/s11069-016-2730-110.1007/s11069-016-2730-1
Language: English
Page range: 3 - 20
Submitted on: Feb 18, 2020
Accepted on: Jun 25, 2020
Published on: Jan 29, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Marta Kiraga, Ananto Yusuf Wicaksono, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.