Have a personal or library account? Click to login
Software quality management: Machine learning for recommendation of regression test suites Cover

Software quality management: Machine learning for recommendation of regression test suites

Open Access
|Mar 2025

References

  1. Alam, M. M., Priti, S. I., Fatema, K., Hasan, M., & Alam, S. (2024). Ensuring excellence: A review of software quality assurance and continuous improvement in software product development. In A. Hamdan (Eds.), Achieving sustainable business through AI, technology education and computer science (Studies in Big Data, Vol. 163, pp. 331-346). Springer. https://doi.org/10.1007/978-3-031-73632-2_28
  2. Alexsoft report. (2023). Quality assurance, quality control, and testing ‒ the basics of software quality management. https://www.altexsoft.com/whitepapers/quality-assurance-quality-control-and-testing-the-basics-of-software-quality-management/
  3. Arachchi, S. A. I. B. S., & Perera, I. (2018). Continuous integration and continuous delivery pipeline automation for agile software project management. In 2018 Moratuwa Engineering Research Conference (MERCon) (pp. 156-161). IEEE. https://doi.org/10.1109/MERCon.2018.8421965
  4. Da Roza, E. A., Lima, J. A. P., Silva, R. C., & Vergilio, S. R. (2022). Machine learning regression techniques for test case prioritization in continuous integration environment. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 196-206). IEEE. https://doi.org/10.1109/SANER53432.2022.00034
  5. Fan, A. G., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., & Zhang, J. M. (2023). Large language models for software engineering: Survey and open problems. Cornell University. https://doi.org/10.48550/arXiv.2310.03533
  6. Forgács, I., & Kovács, A. (2024). Modern software testing techniques. A practical guide for developers and testers. Apress-Springer. https://doi.org/10.1007/978-1-4842-9893-0
  7. Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S. K., Baker, T., Parlikad, A. K., Lutfiyya, H., Kanhere, S. S., Sakellariou, R. ..., & Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514
  8. Goericke, S. (Ed.). (2020). The future of software quality assurance. Springer. https://doi.org/10.1007/978-3-030-29509-7
  9. Guizzo, G., Petke, J., Sarro, F., & Harman, H. (2021). Enhancing genetic improvement of software with regression test selection. In IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 1323-1333). IEEE. https://doi.org/10.1109/ICSE43902.2021.00120
  10. Hoffmann, J., & Frister, D. (2024). Generating software tests for mobile applications using fine-tuned large language models. In 2024 IEEE/ACM International Conference on Automation of Software Test (AST) (pp. 76-77). IEEE. http://doi.org/10.1145/3644032.3644454
  11. ISO. (2015). ISO 9001: Quality management systems. https://www.iso.org/standard/62085.html
  12. ISO. (2023). ISO/IEC 25010: Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – Product quality model. https://www.iso.org/standard/78176.html
  13. ISTQB AI Testing. (2021). Certified tester AI testing (CT-AI) syllabus. https://www.istqb.org/certifications/
  14. ISTQB Testing. (2018). Certified tester foundation level syllabus. International Software Testing Qualifications Board. https://www.istqb.org/sdm_downloads/release-notes-certified-tester-foundation-level-syllabus/
  15. Kalech, M., Abreu, R., & Last, M. (2021). Artificial intelligence methods for software engineering. World Scientific Connect. https://doi.org/10.1142/12360
  16. Khaliq, Z. F. (2022). Artificial intelligence in software testing: Impact, problems, challenges and prospect. https://doi.org/10.48550/arXiv.2201.05371
  17. Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S. C., & Park, S. (2021). Which crashes should I fix first? Predicting top crashes at an early stage to prioritize debugging efforts. IEEE Transactions on Software Engineering, 37(3), 430-447. https://ieeexplore.ieee.org/document/5711013
  18. Kobyliński, A. (2021). Modele cyklu życia oprogramowania. Modele tradycyjne [Software development life cycle models. Traditional models] (1 ed.). SGH.
  19. Laporte, C. Y., & April, A. (2018). Software quality assurance. IEEE Computer Society. John Wiley & Sons. https://doi.org/10.1002/9781119312451
  20. Liu, K., Reddivari, S., & Reddivari, K. (2022). Artificial intelligence in software requirements engineering: State-of-the-art. In IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI) (pp. 106-111). IEEE. https://doi.org/10.1109/IRI54793.2022.00034
  21. Marijan, D., Gotlieb, A., & Liaaen, M. (2018). A learning algorithm for optimizing continuous integration development and testing practice. Journal of Software: Practice and Experience, 49(2), 192-213. https://doi.org/10.1002/spe.2661
  22. Marijan, D. (2023). Comparative study of machine learning test case prioritization for continuous integration testing. Software Quality Journal, 31, 1415-1438. https://doi.org/10.1007/s11219-023-09646-0
  23. Mårtensson, T., Ståhl, D., & Bosch, J. (2019). Test activities in the continuous integration and delivery pipeline. Software: Evolution and Process, 31(4), e2153. https://doi.org/10.1002/smr.2153
  24. Nama, P. (2024). Integrating AI in testing automation: Enhancing test coverage and predictive. World Journal of Advanced Engineering Technology and Sciences, 13(01), 769-782. https://doi.org/10.30574/wjaets.2024.13.1.0486
  25. Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G., & Abraham, A. (2022). A systematic literature review on software defect prediction using artificial intelligence: Datasets, data validation methods, approaches, and tools. Engineering Applications of Artificial Intelligence, 111, 104773. https://doi.org/10.1016/j.engappai.2022.104773
  26. Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L. (2022). Test case selection and prioritization using machine learning: A systematic literature review. Empirical Software Engineering, 27(2), 29. https://doi.org/10.1007/s10664-021-10066-6
  27. PMI. (2021). PMI PMBOOK: A guide to the project management body of knowledge (PMBOK Guide) (7th ed.). PMI Standard. https://www.pmi.org/pmbok-guide-standards/foundational/pmbok
  28. Rai, D., & Seth, K. (2014). Regression test case optimization using honey bee mating optimization algorithm with fuzzy rule base. World Applied Sciences Journal, 31(4), 654-662. https://www.researchgate.net/publication/336133351_Regression_Test_Case_Optimization_Using_Honey_Bee_Mating_Optimization_Algorithm_with_Fuzzy_Rule_Base
  29. Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach (4 ed.). Pearson.
  30. Sutar, S., Kumar, R., Pai, S., & Shwetha, B. S. (2020). Regression test cases selection using natural language processing. In 2020 International Conference on Intelligent Engineering and Management (ICIEM) (pp. 301-305). IEEE. https://doi.org/10.1109/ICIEM48762.2020.9160225
  31. scikit-learn.org. (2024). Clustering (User guide). https://scikit-learn.org/stable/modules/clustering.html#clustering
  32. Shash, M. (2021). Using machine learning for log analysis and anomaly detection: A practical approach to finding the root cause. DZone. https://dzone.com/articles/using-machine-learning-for-log-analysis-and-anomal
  33. Soares, E., Sizilio, G., Santos, J., da Costa, D., & Kulesza, U. (2022). The effects of continuous integration on software development: A systematic literature review. Empirical Software Engineering, 27(3), 78. https://doi.org/10.1007/s10664-021-10114-1
  34. Stige, Å., Zamani, E. D., Mikalef, P., & Zhu, Y. (2023). Artificial intelligence (AI) for user experience (UX) design: A systematic literature review and future research agenda. Information Technology & People, 37(6), 2324-2352. https://doi.org/10.1108/ITP-07-2022-0519
  35. Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering & System Safety, 215, 107864. https://doi.org/10.1016/j.ress.2021.107864
  36. Tuncali, C. E., Fainekos, G., Prokhorov, D., Ito, H., & Kapinski, J. (2019). Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Transactions on Intelligent Vehicles, 5(2), 265-280. https://doi.org/10.1109/TIV.2019.2955903
  37. Virvou, M., Tsihrintzis, G. A., Bourbakis, N. G., & Jain, L. C. (2022). Handbook on artificial intelligence-empowered applied software engineering. Vol. 1: Novel methodologies to engineering smart software systems. Springer. https://doi.org/10.1007/978-3-031-08202-3
  38. Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., & Wang, Q. (2024). Software testing with large language model: Survey, landscape, and vision. IEEE Transactions on Software Engineering, 50(4), 911-936. https://doi.org/10.1109/TSE.2024.3368208
  39. Yang, L., Chen, J., Wang, Z., Wang, W., Jiang, J., Dong, X., & Zhang, W. (2021). Semi--supervised log-based anomaly detection via probabilistic label estimation. In EEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 1448-1460). IEEE. https://doi.org/10.1109/ICSE43902.2021.00130
  40. Yaraghi, A. S., Bagherzadeh, M., Kahani, N., & Briand, L. C. (2022). Scalable and accurate test case prioritization in continuous integration contexts. IEEE Transactions on Software Engineering, 49(4), 1615-1639. https://doi.org/10.1109/TSE.2022.3184842
DOI: https://doi.org/10.22367/jem.2025.47.05 | Journal eISSN: 2719-9975 | Journal ISSN: 1732-1948
Language: English
Page range: 117 - 137
Submitted on: Dec 17, 2023
Accepted on: Feb 10, 2025
Published on: Mar 11, 2025
Published by: University of Economics in Katowice
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Mieczysław Lech Owoc, Adam Stambulski, published by University of Economics in Katowice
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.