Alam, M. M., Priti, S. I., Fatema, K., Hasan, M., & Alam, S. (2024). Ensuring excellence: A review of software quality assurance and continuous improvement in software product development. In A. Hamdan (Eds.), Achieving sustainable business through AI, technology education and computer science (Studies in Big Data, Vol. 163, pp. 331-346). Springer. https://doi.org/10.1007/978-3-031-73632-2_28
Arachchi, S. A. I. B. S., & Perera, I. (2018). Continuous integration and continuous delivery pipeline automation for agile software project management. In 2018 Moratuwa Engineering Research Conference (MERCon) (pp. 156-161). IEEE. https://doi.org/10.1109/MERCon.2018.8421965
Da Roza, E. A., Lima, J. A. P., Silva, R. C., & Vergilio, S. R. (2022). Machine learning regression techniques for test case prioritization in continuous integration environment. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 196-206). IEEE. https://doi.org/10.1109/SANER53432.2022.00034
Fan, A. G., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., & Zhang, J. M. (2023). Large language models for software engineering: Survey and open problems. Cornell University. https://doi.org/10.48550/arXiv.2310.03533
Forgács, I., & Kovács, A. (2024). Modern software testing techniques. A practical guide for developers and testers. Apress-Springer. https://doi.org/10.1007/978-1-4842-9893-0
Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S. K., Baker, T., Parlikad, A. K., Lutfiyya, H., Kanhere, S. S., Sakellariou, R. ..., & Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514
Guizzo, G., Petke, J., Sarro, F., & Harman, H. (2021). Enhancing genetic improvement of software with regression test selection. In IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 1323-1333). IEEE. https://doi.org/10.1109/ICSE43902.2021.00120
Hoffmann, J., & Frister, D. (2024). Generating software tests for mobile applications using fine-tuned large language models. In 2024 IEEE/ACM International Conference on Automation of Software Test (AST) (pp. 76-77). IEEE. http://doi.org/10.1145/3644032.3644454
ISO. (2023). ISO/IEC 25010: Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – Product quality model. https://www.iso.org/standard/78176.html
Kalech, M., Abreu, R., & Last, M. (2021). Artificial intelligence methods for software engineering. World Scientific Connect. https://doi.org/10.1142/12360
Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S. C., & Park, S. (2021). Which crashes should I fix first? Predicting top crashes at an early stage to prioritize debugging efforts. IEEE Transactions on Software Engineering, 37(3), 430-447. https://ieeexplore.ieee.org/document/5711013
Liu, K., Reddivari, S., & Reddivari, K. (2022). Artificial intelligence in software requirements engineering: State-of-the-art. In IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI) (pp. 106-111). IEEE. https://doi.org/10.1109/IRI54793.2022.00034
Marijan, D., Gotlieb, A., & Liaaen, M. (2018). A learning algorithm for optimizing continuous integration development and testing practice. Journal of Software: Practice and Experience, 49(2), 192-213. https://doi.org/10.1002/spe.2661
Marijan, D. (2023). Comparative study of machine learning test case prioritization for continuous integration testing. Software Quality Journal, 31, 1415-1438. https://doi.org/10.1007/s11219-023-09646-0
Mårtensson, T., Ståhl, D., & Bosch, J. (2019). Test activities in the continuous integration and delivery pipeline. Software: Evolution and Process, 31(4), e2153. https://doi.org/10.1002/smr.2153
Nama, P. (2024). Integrating AI in testing automation: Enhancing test coverage and predictive. World Journal of Advanced Engineering Technology and Sciences, 13(01), 769-782. https://doi.org/10.30574/wjaets.2024.13.1.0486
Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G., & Abraham, A. (2022). A systematic literature review on software defect prediction using artificial intelligence: Datasets, data validation methods, approaches, and tools. Engineering Applications of Artificial Intelligence, 111, 104773. https://doi.org/10.1016/j.engappai.2022.104773
Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L. (2022). Test case selection and prioritization using machine learning: A systematic literature review. Empirical Software Engineering, 27(2), 29. https://doi.org/10.1007/s10664-021-10066-6
Sutar, S., Kumar, R., Pai, S., & Shwetha, B. S. (2020). Regression test cases selection using natural language processing. In 2020 International Conference on Intelligent Engineering and Management (ICIEM) (pp. 301-305). IEEE. https://doi.org/10.1109/ICIEM48762.2020.9160225
Soares, E., Sizilio, G., Santos, J., da Costa, D., & Kulesza, U. (2022). The effects of continuous integration on software development: A systematic literature review. Empirical Software Engineering, 27(3), 78. https://doi.org/10.1007/s10664-021-10114-1
Stige, Å., Zamani, E. D., Mikalef, P., & Zhu, Y. (2023). Artificial intelligence (AI) for user experience (UX) design: A systematic literature review and future research agenda. Information Technology & People, 37(6), 2324-2352. https://doi.org/10.1108/ITP-07-2022-0519
Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering & System Safety, 215, 107864. https://doi.org/10.1016/j.ress.2021.107864
Tuncali, C. E., Fainekos, G., Prokhorov, D., Ito, H., & Kapinski, J. (2019). Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Transactions on Intelligent Vehicles, 5(2), 265-280. https://doi.org/10.1109/TIV.2019.2955903
Virvou, M., Tsihrintzis, G. A., Bourbakis, N. G., & Jain, L. C. (2022). Handbook on artificial intelligence-empowered applied software engineering. Vol. 1: Novel methodologies to engineering smart software systems. Springer. https://doi.org/10.1007/978-3-031-08202-3
Yaraghi, A. S., Bagherzadeh, M., Kahani, N., & Briand, L. C. (2022). Scalable and accurate test case prioritization in continuous integration contexts. IEEE Transactions on Software Engineering, 49(4), 1615-1639. https://doi.org/10.1109/TSE.2022.3184842