Have a personal or library account? Click to login
Barriers to the implementation of artificial intelligence in small and medium-sized enterprises: Pilot study Cover

Barriers to the implementation of artificial intelligence in small and medium-sized enterprises: Pilot study

Open Access
|Sep 2024

References

  1. Agarwal, A. (2022). AI adoption by human resource management: A study of its antecedents and impact on HR system effectiveness. Foresight, 25(1), 67-81. https://doi.org/10.1108/FS-10-2021-0199
  2. Ahmed, M. I., Spooner, B., Isherwood, J., Lane, M., Orrock, E., & Dennison, A. (2023). A systematic review of the barriers to the implementation of artificial intelligence in healthcare. Cureus, 15(10), e46454. https://doi.org/10.7759/cureus.46454
  3. Alhosani, K., & Alhashmi, S. M. (2024). Opportunities, challenges, and benefits of AI innovation in government services: A review. Discover Artificial Intelligence, 4(18). https://doi.org/10.1007/s44163-024-00111-w
  4. Alsheiabni, S., Cheung, Y., & Messom, C. (2019). Factors inhibiting the adoption of artificial intelligence at organizational-level: A preliminary investigation. In Americas Conference on Information Systems 2019. Association for Information Systems. https://aisel.aisnet.org/amcis2019/adoption_diffusion_IT/adoption_diffusion_IT/2/
  5. Annual Report on European SMEs 2022/2023. (2023). SME performance review. Grow and Joint Research Centre. https://single-market-economy.ec.europa.eu/document/download/b7d8f71f-4784-4537-8ecf-7f4b53d5fe24_en?filename=Annual%20Report%20on%20European%20SMEs%202023_FINAL.pdf
  6. Bammens, Y., & Hünermund, P. (September 6, 2021). How midsize companies can compete in AI. Harvard Business Review. https://hbr.org/2021/09/how-midsizecompanies-can-compete-in-ai
  7. Bettoni, A., Matteri, D., Montini, E., Gładysz, B., & Carpanzano, E. (2021). An AI adoption model for SMEs: A conceptual framework. IFAC-Papers Online, 54(1), 702-708. https://doi.org/10.1016/j.ifacol.2021.08.082
  8. Bérubé, M., Giannelia, T., & Vial, G. (2021). Barriers to the implementation of AI in organizations: Findings from a Delphi study. Proceedings of the 54th Hawaii International Conference on System Sciences (pp. 6702-6711). https://doi.org/10.24251/HICSS.2021.805
  9. Brennan, H. L., & Kirby, S. D. (2022). Barriers of artificial intelligence implementation in the diagnosis of obstructive sleep apnea. Journal of Otolaryngology-Head & Neck Surgery, 51(1), 16. https://doi.org/10.1186/s40463-022-00566-w
  10. Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205-219. https://doi.org/10.1016/j.indmarman.2021.07.013
  11. Chomutare, T., Tejedor, M., Svenning, T. O., Marco-Ruiz, L., Tayefi, M., Lind, K., Godtliebsen, F., Moen, A., Ismail, L., Makhlysleva, A., & Ngo, P. D. (2022). Artificial intelligence implementation in healthcare: A theory-based scoping review of barriers and facilitators. International Journal of Environmental Research and Public Health, 19(23), 16359. https://doi.org/10.3390/ijerph192316359
  12. Dey, P. K., Chowdhury, S., Abadie, A., Vann Yaroson, E., & Sarkar, S. (2023). Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing smalland medium-sized enterprises. International Journal of Production Research, 62(15), 5417-5456. https://doi.org/10.1080/00207543.2023.2179859
  13. Drmac, F. (2022). Reshaping organizations through artificial intelligence: Overcoming barriers of AI-implementation. http://www.diva-portal.org/smash/get/diva2:1674506/FULLTEXT02.pdf
  14. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kumar Kar, A., Kizgin, H., Kronemann, B., Lal, B., Lucini, B.,... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  15. Faqihi, A., & Miah, S. J. (2023). Artificial intelligence-driven talent management system: Exploring the risks and options for constructing a theoretical foundation. Journal of Risk and Financial Management, 16(1), 31. https://doi.org/10.3390/jrfm16010031
  16. Ferreira, J. J., Lopes, J. M., Gomes, S., & Rammal, H. G. (2023). Industry 4.0 implementation: Environmental and social sustainability in manufacturing multinational enterprises. Journal of Cleaner Production, 404, 136841. https://doi.org/10.1016/j.jclepro.2023.136841
  17. von Garrel, J., & Jahn, C. (2023). Design framework for the implementation of AI-based (service) business models for small and medium-sized manufacturing enterprises. Journal of the Knowledge Economy, 14(3), 3551-3569. https://doi.org/10.1007/s13132-022-01003-z
  18. Ghobakhloo, M., & Ching, N. T. (2019). Adoption of digital technologies of smart manufacturing in SMEs. Journal of Industrial Information Integration, 16, 100107. https://doi.org/10.1016/j.jii.2019.100107
  19. Govori, A., & Sejdija, T. F. (2023). Future prospects and challenges of integrating artificial intelligence within the business practices of small and medium enterprises. Journal of Governance & Regulation, 12(2), 176-183. https://doi.org/10.22495/jgrv12i2art16
  20. Gartner & Turner, J. (contributor). (2022) CFOs: Here are 4 actions to ensure you implement AI – the right way. https://www.gartner.com/en/articles/cfos-here-are-4-actions-to-ensure-you-implement-ai-the-right-way
  21. Grünbichler, R. (2023, June). Implementation barriers of artificial intelligence in companies. In Proceedings of FEB Zagreb International Odyssey Conference on Economics and Business (Vol. 5, No. 1, pp. 193-203). Faculty of Economics and Business, University of Zagreb. https://doi.org/10.22598/odyssey/2023.5
  22. Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99-120. https://doi.org/10.1007/s11023-020-09517-8
  23. Kim, H. K., & Lee, C. W. (2021). Relationships among healthcare digitalization, social capital, and supply chain performance in the healthcare manufacturing industry. International Journal of Environmental Research and Public Health, 18(4), 1417. https://doi.org/10.3390/ijerph18041417
  24. Lada, S., Chekima, B., Karim, M. R. A., Fabeil, N. F., Ayub, M. S., Amirul, S. M., Ansar, R., Bouteraa, M., Fook, L. M., & Zaki, H. O. (2023). Determining factors related to artificial intelligence (AI) adoption among Malaysia’s small and mediumsized businesses. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100144. https://doi.org/10.1016/j.joitmc.2023.100144
  25. Maroufkhani, P., Iranmanesh, M., & Ghobakhloo, M. (2023). Determinants of big data analytics adoption in small and medium-sized enterprises (SMEs). Industrial Management & Data Systems, 123(1), 278-301. https://doi.org/10.1108/IMDS-11-2021-0695
  26. Mikalef, P., & Gupta, M. (2021) Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information and Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
  27. Morley, J., Kinsey, L., Elhalal, A., Garcia, F., Ziosi, M., & Floridi, L. (2023). Operationalising AI ethics: Barriers, enablers and next steps. AI & SOCIETY, 38, 411-423. https://doi.org/10.1007/s00146-021-01308-8
  28. Natale, S., & Ballatore, A. (2020). Imagining the thinking machine: Technological myths and the rise of artificial intelligence. Convergence, 26(1), 3-18. https://doi.org/10.1177/1354856517715164
  29. Nguyen, T. L., Nguyen, V. P., & Dang, T. V. D. (2022). Critical factors affecting the adoption of artificial intelligence: An empirical study in Vietnam. The Journal of Asian Finance, Economics and Business, 9(5), 225-237. https://doi.org/10.13106/jafeb.2022.vol9.no5.0225
  30. Papagiannidis, E., Enholm, I. M., Dremel, C., Mikalef, P., & Krogstie, J. (2023). Toward AI governance: Identifying best practices and potential barriers and outcomes. Information Systems Frontiers, 25(1), 123-141. https://doi.org/10.1007/s10796-022-10251-y
  31. Paranjape, K., Schinkel, M., Hammer, R. D., Schouten, B., Nannan Panday, R. S., Elbers, P. W., Kramer, M. H. H., & Nanayakkara, P. (2021). The value of artificial intelligence in laboratory medicine: Current opinions and barriers to implementation. American Journal of Clinical Pathology, 155(6), 823-831. https://doi.org/10.1093/ajcp/aqaa170
  32. Peña, A., Bonet, I., Lochmuller, C., Tabares, M. S., Piedrahita, C. C., Sánchez, C. C., Giraldo Marín, L. M., Góngora, M., & Chiclana, F. (2019). A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs. Soft Computing, 23, 10537-10550. https://doi.org/10.1007/s00500-018-3625-8
  33. Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia manufacturing, 13, 1206-1214. https://doi.org/10.1016/j.promfg.2017.09.032
  34. von Richthofen, G., Ogolla, S., & Send, H. (2022). Adopting AI in the context of knowledge work: Empirical insights from German organizations. Information, 13(4), 199. https://doi.org/10.3390/info13040199
  35. Shang, G., Low, S. P., & Lim, X. Y. V. (2023). Prospects, drivers of and barriers to artificial intelligence adoption in project management. Built Environment Project and Asset Management, 13(5), 629-645. https://doi.org/10.1108/BEPAM-12-2022-0195
  36. Siau, K., & Wang, W. (2020). Artificial intelligence (AI) ethics: Ethics of AI and ethical AI. Journal of Database Management (JDM), 31(2), 74-87. https://doi.org/10.4018/JDM.2020040105
  37. Singh, R. P., Hom, G. L., Abramoff, M. D., Campbell, J. P., & Chiang, M. F. (2020). Current challenges and barriers to real-world artificial intelligence adoption for the healthcare system, provider, and the patient. Translational Vision Science & Technology, 9(2), 45. https://doi.org/10.1167/tvst.9.2.45
  38. Ullah, F., Sepasgozar, S. M., Thaheem, M. J., & Al-Turjman, F. (2021). Barriers to the digitalisation and innovation of Australian Smart Real Estate: A managerial perspective on the technology non-adoption. Environmental Technology & Innovation, 22, 101527. https://doi.org/10.1016/j.eti.2021.101527
  39. Ulrich, P., & Frank, V. (2021). Relevance and adoption of AI technologies in German SMEs – results from survey-based research. Procedia Computer Science, 192, 2152-2159. https://doi.org/10.1016/j.procs.2021.08.228
  40. Wei, R., & Pardo, C. (2022). Artificial intelligence and SMEs: How can B2B SMEs leverage AI platforms to integrate AI technologies? Industrial Marketing Management, 107, 466-483. https://doi.org/10.1016/j.indmarman.2022.10.008
DOI: https://doi.org/10.22367/jem.2024.46.13 | Journal eISSN: 2719-9975 | Journal ISSN: 1732-1948
Language: English
Page range: 331 - 352
Submitted on: May 23, 2024
Accepted on: Aug 28, 2024
Published on: Sep 16, 2024
Published by: University of Economics in Katowice
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Lucie Sara Zavodna, Margarethe Überwimmer, Elisabeth Frankus, published by University of Economics in Katowice
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.