References
- Agarwal, A. (2022). AI adoption by human resource management: A study of its antecedents and impact on HR system effectiveness. Foresight, 25(1), 67-81. https://doi.org/10.1108/FS-10-2021-0199
- Ahmed, M. I., Spooner, B., Isherwood, J., Lane, M., Orrock, E., & Dennison, A. (2023). A systematic review of the barriers to the implementation of artificial intelligence in healthcare. Cureus, 15(10), e46454. https://doi.org/10.7759/cureus.46454
- Alhosani, K., & Alhashmi, S. M. (2024). Opportunities, challenges, and benefits of AI innovation in government services: A review. Discover Artificial Intelligence, 4(18). https://doi.org/10.1007/s44163-024-00111-w
- Alsheiabni, S., Cheung, Y., & Messom, C. (2019). Factors inhibiting the adoption of artificial intelligence at organizational-level: A preliminary investigation. In Americas Conference on Information Systems 2019. Association for Information Systems. https://aisel.aisnet.org/amcis2019/adoption_diffusion_IT/adoption_diffusion_IT/2/
- Annual Report on European SMEs 2022/2023. (2023). SME performance review. Grow and Joint Research Centre. https://single-market-economy.ec.europa.eu/document/download/b7d8f71f-4784-4537-8ecf-7f4b53d5fe24_en?filename=Annual%20Report%20on%20European%20SMEs%202023_FINAL.pdf
- Bammens, Y., & Hünermund, P. (September 6, 2021). How midsize companies can compete in AI. Harvard Business Review. https://hbr.org/2021/09/how-midsizecompanies-can-compete-in-ai
- Bettoni, A., Matteri, D., Montini, E., Gładysz, B., & Carpanzano, E. (2021). An AI adoption model for SMEs: A conceptual framework. IFAC-Papers Online, 54(1), 702-708. https://doi.org/10.1016/j.ifacol.2021.08.082
- Bérubé, M., Giannelia, T., & Vial, G. (2021). Barriers to the implementation of AI in organizations: Findings from a Delphi study. Proceedings of the 54th Hawaii International Conference on System Sciences (pp. 6702-6711). https://doi.org/10.24251/HICSS.2021.805
- Brennan, H. L., & Kirby, S. D. (2022). Barriers of artificial intelligence implementation in the diagnosis of obstructive sleep apnea. Journal of Otolaryngology-Head & Neck Surgery, 51(1), 16. https://doi.org/10.1186/s40463-022-00566-w
- Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205-219. https://doi.org/10.1016/j.indmarman.2021.07.013
- Chomutare, T., Tejedor, M., Svenning, T. O., Marco-Ruiz, L., Tayefi, M., Lind, K., Godtliebsen, F., Moen, A., Ismail, L., Makhlysleva, A., & Ngo, P. D. (2022). Artificial intelligence implementation in healthcare: A theory-based scoping review of barriers and facilitators. International Journal of Environmental Research and Public Health, 19(23), 16359. https://doi.org/10.3390/ijerph192316359
- Dey, P. K., Chowdhury, S., Abadie, A., Vann Yaroson, E., & Sarkar, S. (2023). Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing smalland medium-sized enterprises. International Journal of Production Research, 62(15), 5417-5456. https://doi.org/10.1080/00207543.2023.2179859
- Drmac, F. (2022). Reshaping organizations through artificial intelligence: Overcoming barriers of AI-implementation. http://www.diva-portal.org/smash/get/diva2:1674506/FULLTEXT02.pdf
- Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kumar Kar, A., Kizgin, H., Kronemann, B., Lal, B., Lucini, B.,... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
- Faqihi, A., & Miah, S. J. (2023). Artificial intelligence-driven talent management system: Exploring the risks and options for constructing a theoretical foundation. Journal of Risk and Financial Management, 16(1), 31. https://doi.org/10.3390/jrfm16010031
- Ferreira, J. J., Lopes, J. M., Gomes, S., & Rammal, H. G. (2023). Industry 4.0 implementation: Environmental and social sustainability in manufacturing multinational enterprises. Journal of Cleaner Production, 404, 136841. https://doi.org/10.1016/j.jclepro.2023.136841
- von Garrel, J., & Jahn, C. (2023). Design framework for the implementation of AI-based (service) business models for small and medium-sized manufacturing enterprises. Journal of the Knowledge Economy, 14(3), 3551-3569. https://doi.org/10.1007/s13132-022-01003-z
- Ghobakhloo, M., & Ching, N. T. (2019). Adoption of digital technologies of smart manufacturing in SMEs. Journal of Industrial Information Integration, 16, 100107. https://doi.org/10.1016/j.jii.2019.100107
- Govori, A., & Sejdija, T. F. (2023). Future prospects and challenges of integrating artificial intelligence within the business practices of small and medium enterprises. Journal of Governance & Regulation, 12(2), 176-183. https://doi.org/10.22495/jgrv12i2art16
- Gartner & Turner, J. (contributor). (2022) CFOs: Here are 4 actions to ensure you implement AI – the right way. https://www.gartner.com/en/articles/cfos-here-are-4-actions-to-ensure-you-implement-ai-the-right-way
- Grünbichler, R. (2023, June). Implementation barriers of artificial intelligence in companies. In Proceedings of FEB Zagreb International Odyssey Conference on Economics and Business (Vol. 5, No. 1, pp. 193-203). Faculty of Economics and Business, University of Zagreb. https://doi.org/10.22598/odyssey/2023.5
- Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99-120. https://doi.org/10.1007/s11023-020-09517-8
- Kim, H. K., & Lee, C. W. (2021). Relationships among healthcare digitalization, social capital, and supply chain performance in the healthcare manufacturing industry. International Journal of Environmental Research and Public Health, 18(4), 1417. https://doi.org/10.3390/ijerph18041417
- Lada, S., Chekima, B., Karim, M. R. A., Fabeil, N. F., Ayub, M. S., Amirul, S. M., Ansar, R., Bouteraa, M., Fook, L. M., & Zaki, H. O. (2023). Determining factors related to artificial intelligence (AI) adoption among Malaysia’s small and mediumsized businesses. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100144. https://doi.org/10.1016/j.joitmc.2023.100144
- Maroufkhani, P., Iranmanesh, M., & Ghobakhloo, M. (2023). Determinants of big data analytics adoption in small and medium-sized enterprises (SMEs). Industrial Management & Data Systems, 123(1), 278-301. https://doi.org/10.1108/IMDS-11-2021-0695
- Mikalef, P., & Gupta, M. (2021) Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information and Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
- Morley, J., Kinsey, L., Elhalal, A., Garcia, F., Ziosi, M., & Floridi, L. (2023). Operationalising AI ethics: Barriers, enablers and next steps. AI & SOCIETY, 38, 411-423. https://doi.org/10.1007/s00146-021-01308-8
- Natale, S., & Ballatore, A. (2020). Imagining the thinking machine: Technological myths and the rise of artificial intelligence. Convergence, 26(1), 3-18. https://doi.org/10.1177/1354856517715164
- Nguyen, T. L., Nguyen, V. P., & Dang, T. V. D. (2022). Critical factors affecting the adoption of artificial intelligence: An empirical study in Vietnam. The Journal of Asian Finance, Economics and Business, 9(5), 225-237. https://doi.org/10.13106/jafeb.2022.vol9.no5.0225
- Papagiannidis, E., Enholm, I. M., Dremel, C., Mikalef, P., & Krogstie, J. (2023). Toward AI governance: Identifying best practices and potential barriers and outcomes. Information Systems Frontiers, 25(1), 123-141. https://doi.org/10.1007/s10796-022-10251-y
- Paranjape, K., Schinkel, M., Hammer, R. D., Schouten, B., Nannan Panday, R. S., Elbers, P. W., Kramer, M. H. H., & Nanayakkara, P. (2021). The value of artificial intelligence in laboratory medicine: Current opinions and barriers to implementation. American Journal of Clinical Pathology, 155(6), 823-831. https://doi.org/10.1093/ajcp/aqaa170
- Peña, A., Bonet, I., Lochmuller, C., Tabares, M. S., Piedrahita, C. C., Sánchez, C. C., Giraldo Marín, L. M., Góngora, M., & Chiclana, F. (2019). A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs. Soft Computing, 23, 10537-10550. https://doi.org/10.1007/s00500-018-3625-8
- Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia manufacturing, 13, 1206-1214. https://doi.org/10.1016/j.promfg.2017.09.032
- von Richthofen, G., Ogolla, S., & Send, H. (2022). Adopting AI in the context of knowledge work: Empirical insights from German organizations. Information, 13(4), 199. https://doi.org/10.3390/info13040199
- Shang, G., Low, S. P., & Lim, X. Y. V. (2023). Prospects, drivers of and barriers to artificial intelligence adoption in project management. Built Environment Project and Asset Management, 13(5), 629-645. https://doi.org/10.1108/BEPAM-12-2022-0195
- Siau, K., & Wang, W. (2020). Artificial intelligence (AI) ethics: Ethics of AI and ethical AI. Journal of Database Management (JDM), 31(2), 74-87. https://doi.org/10.4018/JDM.2020040105
- Singh, R. P., Hom, G. L., Abramoff, M. D., Campbell, J. P., & Chiang, M. F. (2020). Current challenges and barriers to real-world artificial intelligence adoption for the healthcare system, provider, and the patient. Translational Vision Science & Technology, 9(2), 45. https://doi.org/10.1167/tvst.9.2.45
- Ullah, F., Sepasgozar, S. M., Thaheem, M. J., & Al-Turjman, F. (2021). Barriers to the digitalisation and innovation of Australian Smart Real Estate: A managerial perspective on the technology non-adoption. Environmental Technology & Innovation, 22, 101527. https://doi.org/10.1016/j.eti.2021.101527
- Ulrich, P., & Frank, V. (2021). Relevance and adoption of AI technologies in German SMEs – results from survey-based research. Procedia Computer Science, 192, 2152-2159. https://doi.org/10.1016/j.procs.2021.08.228
- Wei, R., & Pardo, C. (2022). Artificial intelligence and SMEs: How can B2B SMEs leverage AI platforms to integrate AI technologies? Industrial Marketing Management, 107, 466-483. https://doi.org/10.1016/j.indmarman.2022.10.008