Have a personal or library account? Click to login
Structural Cohesion: Visualization and Heuristics for Fast Computation Cover

Structural Cohesion: Visualization and Heuristics for Fast Computation

Open Access
|Aug 2019

References

  1. Abelson, H., G. Sussman, J. Sussman, and A. Perlis (1985). Structure and interpretation of computer programs, Volume 2. MIT Press Cambridge, MA.
  2. Ahmed, A., V. Batagelj, X. Fu, S.-H. Hong, D. Merrick, and A. Mrvar (2007). Visualisation and analysis of the internet movie database. In Visualization, 2007. APVIS’07. 2007 6th International Asia-Pacific Symposium on, pp. 17–24. IEEE.10.1109/APVIS.2007.329304
  3. Albert, R., H. Jeong, and A. Barabási (2000). Error and attack tolerance of complex networks. Nature 406(6794), 378–382.
  4. Batagelj, V. and M. Zaveršnik (2011). Fast algorithms for determining (generalized) core groups in social networks. Advances in Data Analysis and Classification 5(2), 129–145.10.1007/s11634-010-0079-y
  5. Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31–45.10.1016/S0012-365X(01)00180-7
  6. Bolz, C., A. Cuni, M. Fijalkowski, and A. Rigo (2009). Tracing the meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages and Programming Systems, pp. 18–25. ACM.10.1145/1565824.1565827
  7. Brandes, U. and T. Erlebach (2005). Network analysis: methodological foundations, Volume 3418. Springer Verlag.
  8. Csárdi, G. and T. Nepusz (2006). The igraph software package for complex network research.
  9. Dodds, P., D. Watts, and C. Sabel (2003). Information exchange and the robustness of organizational networks. Proceedings of the National Academy of Sciences 100(21), 12516.10.1073/pnas.1534702100
  10. Ellson, J., E. Gansner, L. Koutsofios, S. North, and G. Woodhull (2002). Graphviz—open source graph drawing tools. In Graph Drawing, pp. 594–597. Springer.10.1007/3-540-45848-4_57
  11. Fortunato, S. (2010). Community detection in graphs. Physics Reports 486(3-5), 75–174.10.1016/j.physrep.2009.11.002
  12. Grannis, R. (2009). Paths and semipaths: reconceptualizing structural cohesion in terms of directed relations. Sociological Methodology 39(1), 117–150.10.1111/j.1467-9531.2009.01213.x
  13. Granovetter, M. (1985). Economic action and social structure: the problem of embeddedness. American Journal of Sociology 91(3), 481.10.1086/228311
  14. Gutwenger, C. and P. Mutzel (2001). A linear time implementation of spqr-trees. In Graph Drawing, pp. 77–90. Springer.10.1007/3-540-44541-2_8
  15. Hagberg, A., D. Schult, and P Swart (2008, August). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA, pp. 11–15.
  16. Hopcroft, J. and R. Tarjan (1974). Dividing a graph into triconnected components.10.1137/0202012
  17. Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing In Science & Engineering 9(3), 90–95.10.1109/MCSE.2007.55
  18. Jones, E., T. Oliphant, P. Peterson, et al. (2001). SciPy: Open source scientific tools for Python.
  19. Kamada, T. and S. Kawai (1989). An algorithm for drawing general undirected graphs. Information processing letters 31(1), 7–15.10.1016/0020-0190(89)90102-6
  20. Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533-541.10.1002/net.3230230604
  21. Latapy, M., C. Magnien, and N. Vecchio (2008). Basic notions for the analysis of large twomode networks. Social Networks 30(1), 31–48.10.1016/j.socnet.2007.04.006
  22. Lind, P., M. Gonzalez, and H. Herrmann (2005). Cycles and clustering in bipartite networks. Physical Review E 72(5), 56127.10.1103/PhysRevE.72.056127
  23. Mani, D. and J. Moody (2014). Moving beyond stylized economic network models: The hybrid world of the indian firm ownership network. American Journal of Sociology 119(6), pp. 1629–1669.10.1086/676040
  24. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review 69(2), 213–238.10.1177/000312240406900204
  25. Moody, J., D. McFarland, and S. Bender-deMoll (2005). Dynamic network visualization. American Journal of Sociology 110(4), 1206–1241.10.1086/421509
  26. Moody, J. and D. White (2003). Social cohesion and embeddedness: A hierarchical conception of social groups. American Sociological Review 6δ(1), 103–28.10.2307/3088904
  27. Newman, M. (2003). The structure and function of complex networks. SIAM Review 45, 167.10.1137/S003614450342480
  28. O’Mahony, S. and F Ferraro (2007). The emergence of governance in an open source community. The Academy of Management Journal 50(5), 1079–1106.10.5465/amj.2007.27169153
  29. Opsahl, T. (2011). Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks 34.
  30. Pérez, F. and B. E. Granger (2007, May). IPython: a System for Interactive Scientific Computing. Comput. Sci. Eng. 9(3), 21–29.10.1109/MCSE.2007.53
  31. Powell, W., D. White, K. Koput, and J. Owen-Smith (2005). Network dynamics and field evolution: The growth of interorganizational collaboration in the life sciences. American journal of sociology 110(4), 1132–1205.10.1086/421508
  32. Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Computational & Mathematical Organization Theory 10(1), 69–94.10.1023/B:CMOT.0000032580.12184.c0
  33. Seidman, S. (1983). Network structure and minimum degree. Social networks 5(3), 269–287.10.1016/0378-8733(83)90028-X
  34. Shwed, U. and P. Bearman (2010). The temporal structure of scientific consensus formation. American sociological review 75(6), 817–840.10.1177/0003122410388488
  35. Tarjan, R. (1972). Depth-first search and linear graph algorithms. In Switching and Automata Theory, 1971., 12th Annual Symposium on, pp. 114–121. IEEE.10.1137/0201010
  36. Uzzi, B., L. Amaral, and F. Reed-Tsochas (2007). Small-world networks and management science research: a review. European Management Review 4(2), 77–91.10.1057/palgrave.emr.1500078
  37. Van Rossum, G. (1995). Python reference manual. Centrum voor Wiskunde en Informatica.
  38. Wasserman, S. and K. Faust (1994). Social network analysis: Methods and applications. Cambridge University Press.10.1017/CBO9780511815478
  39. White, D. and F. Harary (2001). The cohesiveness of blocks in social networks: Node connectivity and conditional density. Sociological Methodology, 305–359.10.1111/0081-1750.00098
  40. White, D. and M. Newman (2001). Fast approximation algorithms for finding node-independent paths in networks. Santa Fe Institute Working Papers Series.10.2139/ssrn.1831790
  41. White, D., J. Owen-Smith, J. Moody, and W. Powell (2004). Networks, fields and organizations: micro-dynamics, scale and cohesive embeddings. Computational & Mathematical Organization Theory 10(1), 95–117.10.1023/B:CMOT.0000032581.34436.7b
DOI: https://doi.org/10.21307/joss-2019-018 | Journal eISSN: 1529-1227 | Journal ISSN: 2300-0422
Language: English
Page range: 1 - 36
Published on: Aug 13, 2019
Published by: International Network for Social Network Analysis (INSNA)
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Jordi Torrents, Fabrizio Ferraro, published by International Network for Social Network Analysis (INSNA)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.