Have a personal or library account? Click to login
Sender- and receiver-specific blockmodels Cover
By: Zhi Geng and  Krzysztof Nowicki  
Open Access
|Aug 2019

References

  1. Andersen, E. B. (1980). Discrete Statistical Models with Social Science Applications. NorthHolland, Amsterdam.
  2. Boer, P., Huisman, M., Snijders, T. and Zeggelink, E.P.H. (2003). StOCNET: an open software system for the advanced statistical analysis of social networks. Version 1.4. Groningen: ProGAMMA / ICS.
  3. Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.). Springer-Verlag, ISBN 0-387-95364-7.
  4. Crossley, N., Bellotti, E., Edwards, G., Everett, M. G., Koskinen, J. and Tranmer, M. (2015) Social Network Analysis, An Actor Centred Approach. Sage Publications Ltd, ISBN: 9781446267769.
  5. Dampster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, B (39): 1-38.
  6. Daudin, J. Picard, F. and Robin, S. (2008). A mixture model for random graph. Statistics and computing (18): 173-183.
  7. Hansell, S. (1984). Cooperative groups, weak ties, and the integration of peer friendships. Social Psychology Quarterly, 47, 316-328.10.2307/3033634
  8. Kaiser, M. (2008). Mean clustering coefficients: the role of isolated nodes and leafs on clustering measures for small-world networks. New J. Phys. 10 083042.10.1088/1367-2630/10/8/083042
  9. Kaiser, M. (2008). Mean clustering coefficients: the role of isolated nodes and leafs on clustering measures for small-world networks. New J. Phys. 10 083042.10.1088/1367-2630/10/8/083042
  10. Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9, 104-134.10.1016/0378-8733(87)90009-8
  11. Luce, R.D. and Perry, A.D. (1949). A method of matrix analysis of group structure. Psychometrika 14 (1): 95-116.
  12. Newman, M. (2006). Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104.10.1103/PhysRevE.74.036104
  13. Newman, M. and Leicht, E. (2007). Mixture models and exploratory analysis in networks. PNAS 104:9564-9569.
  14. Nowicki, K. and Snijders, T. (2001). Estimation and prediction for stochastic blockstructures. J. Amer. Statist. Assoc., 96(455):IO77-IO87.
  15. Picard, F. (2008). An Introduction to mixture models. SSB preprint (7)o
  16. Snijders, T. and Nowicki, K. (1997). Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14, 75 -100.10.1007/s003579900004
  17. Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Application. Cambridge: Cambridge University Press.10.1017/CBO9780511815478
  18. G. B. Folland. Higher-Order Derivatives and Taylor’s Formula in Several Variables.
  19. Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of ‘smallworld’ networks. Nature 393 (6684): 440-442.
  20. Yang, Y. (2005). Can the strengths of AIC and BIC be shared?. Biometrika 92: 937-950.
  21. Zachary, W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452-473.10.1086/jar.33.4.3629752
DOI: https://doi.org/10.21307/joss-2019-015 | Journal eISSN: 1529-1227 | Journal ISSN: 2300-0422
Language: English
Page range: 1 - 34
Published on: Aug 13, 2019
Published by: International Network for Social Network Analysis (INSNA)
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Zhi Geng, Krzysztof Nowicki, published by International Network for Social Network Analysis (INSNA)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.