Have a personal or library account? Click to login

The P1PK blood group system: revisited and resolved

Open Access
|Jan 2020

References

  1. Hellberg Å, Westman JS, Thuresson B, Olsson ML. P1PK: the blood group system that changed its name and expanded. Immunohematology 2013;29:25–33.
  2. Veldhuisen B, van der Schoot CE, de Haas M. Blood group genotyping: from patient to high-throughput donor screening. Vox Sang 2009;97:198–206.
  3. Bezirgiannidou Z, Christoforidou A, Kontekaki E, et al. Hyperhemolytic syndrome complicating a delayed hemolytic transfusion reaction due to anti-P1 alloimmunization, in a pregnant woman with HbO-Arab/ß-thalassemia. Mediterr J Hematol Infect Dis 2016;8:e2016053.
  4. Smith D, Aye T, Er LS, Nester T, Delaney M. Acute hemolytic transfusion reaction due to anti-P1: a case report and review of institutional experience. Transfus Med Hemother 2019;46:381–4.
  5. Kaczmarek R, Duk M, Szymczak K, et al. Human Gb3/CD77 synthase reveals specificity toward two or four different acceptors depending on amino acid at position 211, creating P(k), P1 and NOR blood group antigens. Biochem Biophys Res Comm 2016;470:168–74.
  6. Haselberger SG, Schenkel-Brunner H. Evidence for erythrocyte membrane glycoproteins being carriers of blood-group P1 determinants. FEBS Lett 1982;149:126–8.
  7. Yang Z, Bergström J, Karlsson K-A. Glycoproteins with Galalpha4Gal are absent from human erythrocyte membranes, indicating that glycolipids are the sole carriers of blood group P activities. J Biol Chem 1994;269:14620–4.
  8. Stenfelt L, Westman JS, Hellberg A, Olsson ML. The P1 histo-blood group antigen is present on human red blood cell glycoproteins. Transfusion 2019;59:1108–17.
  9. Szymczak-Kulus K, Weidler S, Bereznicka A, et al. Novel bisgalactosylated type of N-glycans as decoy receptors for Shiga toxin? Glycoconj J 2019;36:369.
  10. Tsering D, Chen C, Ye J, et al. Enzymatic synthesis of human blood group P1 pentasaccharide antigen. Carbohydr Res 2017;438:39–43.
  11. Jacob F, Alam S, Konantz M, et al. Transition of mesenchymal and epithelial cancer cells depends on alpha1-4 galactosyltransferase-mediated glycosphingolipids. Cancer Res 2018;78:2952–65.
  12. Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology 2006;16:29R–37R.
  13. Pacheco AR, Lazarus JE, Sit B, et al. CRISPR screen reveals that EHEC’s T3SS and shiga toxin rely on shared host factors for infection. MBio 2018;9:e011003–18.
  14. Tian S, Muneeruddin K, Choi MY, et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol 2018;16:e2006951.
  15. Yamaji T, Sekizuka T, Tachida Y, et al. A CRISPR screen identifies LAPTM4A and TM9SF proteins as glycolipid-regulating factors. iScience 2019;11:409–24.
  16. Cabrita MA, Hobman TC, Hogue DL, King KM, Cass CE. Mouse transporter protein, a membrane protein that regulates cellular multidrug resistance, is localized to lysosomes. Cancer Res 1999;59:4890–7.
  17. Möller M, Jöud M, Storry JR, Olsson ML. Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Adv 2016;1:240–9.
  18. Shastry S, Satyamoorthy K, Acharya KV, et al. Deletion in the A4GALT gene associated with rare “P null” phenotype: the first report from India. Transfus Med Hemother 2020;47:186–9.
  19. Tilley L, McNeill A, Baglow L, et al. Two novel A4GALT null alleles detected in patients with the p phenotype (abstract). Br Blood Transfus Soc Ann Conf 2019;127.
  20. Westman JS, Hellberg Å, Peyrard T, Thuresson B, Olsson ML. Large deletions involving the regulatory upstream regions of A4GALT give rise to principally novel P1PK-null alleles. Transfusion 2014;54:1831–5.
  21. Thuresson B, Westman JS, Olsson ML. Identification of a novel A4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups. Blood 2011;117:678–87.
  22. Lai YJ, Wu WY, Yang CM, et al. A systematic study of single-nucleotide polymorphisms in the A4GALT gene suggests a molecular genetic basis for the P1/P2 blood groups. Transfusion 2014;54:3222–31.
  23. Iwamura K, Furukawa K, Uchikawa M, et al. The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene: a clue to the solution of the P1/P2/p puzzle. J Biol Chem 2003;278:44429–38.
  24. Eernstman J, Veldhuisen B, Heshusius S, et al. KLF1 regulates P1 expression through transcriptional control of A4GALT. Vox Sang 2017;112:25(3B-S06-2).
  25. Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood 2008;112:2081–8.
  26. Kawai M, Obara K, Onodera T, et al. Mutations of the KLF1 gene detected in Japanese with the In(Lu) phenotype. Transfusion 2017;57:1072–7.
  27. Westman JS, Stenfelt L, Vidovic K, et al. Allele-selective RUNX1 binding regulates P1 blood group status by transcriptional control of A4GALT. Blood 2018;131:1611–6.
  28. Yeh CC, Chang CJ, Twu YC, et al. The differential expression of the blood group P(1)-A4GALT and P(2)-A4GALT alleles is stimulated by the transcription factor early growth response 1. Transfusion 2018;58:1054–64.
  29. Kaczmarek R, Szymczak-Kulus K, Bereznicka A, et al. Single nucleotide polymorphisms in A4GALT spur extra products of the human Gb3/CD77 synthase and underlie the P1PK blood group system. PLoS One 2018;13:e0196627.
  30. Levine P. Illegitimate blood group antigens P1, A, and MN (T) in malignancy—a possible therapeutic approach with anti-Tja, anti-A, and anti-T. Ann N Y Acad Sci 1976;277:428–35.
  31. Jacob F, Goldstein DR, Bovin NV, et al. Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array. Int J Cancer 2012;130:138–46.
  32. Jacob F, Anugraham M, Pochechueva T, et al. The glycosphingolipid P(1) is an ovarian cancer-associated carbohydrate antigen involved in migration. Br J Cancer 2014;111:1634–45.
  33. Puri A, Rawat SS, Lin HM, et al. An inhibitor of glycosphingolipid metabolism blocks HIV-1 infection of primary T-cells. AIDS 2004;18:849–58.
  34. Hammache D, Yahi N, Maresca M, Pieroni G, Fantini J. Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J Virol 1999;73:5244–8.
  35. Lund N, Olsson ML, Ramkumar S, et al. The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood 2009;113:4980–91.
  36. Motswaledi MS, Kasvosve I, Oguntibeju OO. Blood group antigens C, Lub and P1 may have a role in HIV infection in Africans. PLoS One 2016;11:e0149883.
DOI: https://doi.org/10.21307/immunohematology-2020-048 | Journal eISSN: 1930-3955 | Journal ISSN: 0894-203X
Language: English
Page range: 99 - 103
Published on: Jan 1, 2020
Published by: American National Red Cross
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 L. Stenfelt, Å. Hellberg, J.S. Westman, M.L. Olsson, published by American National Red Cross
This work is licensed under the Creative Commons Attribution 4.0 License.