Have a personal or library account? Click to login
Review: the function of blood group–specific RBC membrane components Cover

Review: the function of blood group–specific RBC membrane components

By:
Paid access
|May 2020

References

  1. Reid ME, Lomas-Francis C.The blood group antigen factsbook. 2nd ed. San Diego:Academic Press, 2003.10.1016/B978-012586585-2/50007-X
  2. Daniels G. Human blood groups. 2nd ed. Oxford: Blackwell Science, 2002.10.1002/9780470987018
  3. Reid ME, Mohandas N. RBC blood group antigens: structure and function. Semin Hematol 2004; 41:93-117.10.1053/j.seminhematol.2004.01.00115071789
  4. Moulds JM, Moulds JJ. Blood group associations with parasites, bacteria, and viruses. Transfus Med Rev 2000;14:302-11.10.1053/tmrv.2000.1622711055075
  5. Garratty G. Blood groups and disease: a historical perspective. Transfus Med Rev 2000;14:291-301.10.1053/tmrv.2000.1622811055074
  6. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. 3rd ed. New York & London: Garland Publishing, Inc, 1994.
  7. Bruce LJ, Beckmann R, Ribeiro ML, et al.A band 3based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 2003; 101:4180-8.10.1182/blood-2002-09-282412531814
  8. Le Van Kim C, Collec E, Kroviarski Y, et al. Interaction of Kell glycoprotein with the erythroid membrane skeleton. Vox Sang 2002;83:26.
  9. Kroviarski Y, El Nemer W, Gane P, et al. Direct interaction between the Lu/B-CAM adhesion glycoproteins and er ythroid spectrin. Br J Haematol 2004;126:255-64.10.1111/j.1365-2141.2004.05010.x15238148
  10. An X, Guo X, Wu Y, et al. Phosphatidylserine binding sites in red cell spectrin. Blood Cells Mol Dis 2004;32:430-2.10.1016/j.bcmd.2004.02.00115121103
  11. An X, Guo X, Sum H, et al. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 2004;43:310-5.10.1021/bi035653h14717584
  12. Mouro-Chanteloup I, Delaunay J, Gane P, et al. Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood 2003;101:338-44.10.1182/blood-2002-04-128512393467
  13. Nicolas V, Le Van KC, Gane P, et al. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem 2003;278:25526-33.10.1074/jbc.M302816200
  14. Tanner MJ. The structure and function of band 3 (AE1): recent developments (review). Mol Membr Biol 1997;14:155-65.10.3109/09687689709048178
  15. Bruce LJ,Tanner MJ. Erythroid band 3 variants and disease. Baillieres Best Pract Res Clin Haematol 1999;12:637-54.10.1053/beha.1999.0046
  16. Inaba M,Yawata A, Koshino I,et al. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest 1996;97:1804-17.10.1172/JCI118610
  17. Ribeiro ML, Alloisio N, Almeida H, et al. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood 2000;96:1602-4.
  18. Southgate CD, Chishti AH, Mitchell B, et al. Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton. Nat Genet 1996;14:227-30.10.1038/ng1096-227
  19. Groves JD, Tanner MJ. The effects of glycophorin A on the expression of the human red cell anion transporter (band 3) in Xenopus oocytes. J Membr Biol 1994;140:81-8.
  20. Bruce LJ, Groves JD, Okubo Y, et al. Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) RBCs. Blood 1994;84:916-22.10.1182/blood.V84.3.916.916
  21. Bruce LJ, Pan RJ, Cope DL, et al. Altered structure and anion transport properties of band 3 (AE1, SLC4A1) in human red cells lacking glycophorin A.J Biol Chem 2004;279:2414-20.10.1074/jbc.M309826200
  22. Wrong O, Bruce LJ, Unwin RJ, et al. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int 2002; 62:10-9.10.1046/j.1523-1755.2002.00417.x
  23. Tanner MJ. Band 3 anion exchanger and its involvement in erythrocyte and kidney disorders. Curr Opin Hematol 2002;9:133-9.10.1097/00062752-200203000-00009
  24. Cartron JP, Colin Y. Structural and functional diversity of blood group antigens. Transfus Clin Biol 2001;8:163-99.10.1016/S1246-7820(01)00142-2
  25. Eber S, Lux SE. Hereditary spherocytosis—defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol 2004;41:118-41.10.1053/j.seminhematol.2004.01.00215071790
  26. Avent ND, Reid ME. The Rh blood group system: a review [published erratum appears in Blood 2000 Apr 1;95(7):2197]. Blood 2000;95:375-87.
  27. Huang CH. Molecular insights into the Rh protein family and associated antigens. Curr Opin Hematol 1997;4:94-103.10.1097/00062752-199704020-000049107525
  28. Cartron JP. RH blood group system and molecular basis of Rh-deficiency. Baillieres Best Pract Res Clin Haematol 1999;12:655-89.10.1053/beha.1999.004710895258
  29. Beckmann R, Smythe JS,Anstee DJ,et al. Functional cell surface expression of band 3, the human RBC anion exchange protein (AE1), in K562 erythroleukemia cells: band 3 enhances the cell surface reactivity of Rh antigens. Blood 1998;92:4428-38.10.1182/blood.V92.11.4428
  30. Beckmann R, Smythe JS, Anstee DJ, et al. Coexpression of band 3 mutants and Rh polypeptides: differential effects of band 3 on the expression of the Rh complex containing D polypeptide and the Rh complex containing CcEe polypeptide. Blood 2001;97:2496-505.10.1182/blood.V97.8.2496
  31. Dahl KN, Westhoff CM, Discher DE. Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes. Blood 2003;101:1194-9.10.1182/blood-2002-04-118712393442
  32. Dahl KN, Parthasarathy R, Westhoff CM, et al. Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells. Blood 2004; 103:1131-6.10.1182/blood-2003-04-133114551146
  33. Bruce LJ, Ghosh S, King MJ, et al. Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex. Blood 2002;100:1878-85.10.1182/blood-2002-03-070612176912
  34. Huang CH, Liu PZ. New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells Mol Dis 2001;27:90-101.10.1006/bcmd.2000.035511358367
  35. Marini AM, Matassi G, Raynal V, et al. The human rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 2000;26:341-4.10.1038/8165611062476
  36. Westhoff CM, Ferreri-Jacobia M, Mak DO, et al. Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter.J Biol Chem 2002;277:12499-502.10.1074/jbc.C200060200
  37. Hemker MB, Cheroutre G,van Zwieten R, et al.The Rh complex exports ammonium from human RBCs. Br J Haematol 2003;122:333-40.10.1046/j.1365-2141.2003.04425.x
  38. Soupene E, King N, Feild E, et al. Rhesus expression in a green alga is regulated by CO(2). Proc Natl Acad Sci U S A 2002;99:7769-73.10.1073/pnas.112225599
  39. Lee S, Russo DC, Reiner AP, et al. Molecular defects underlying the Kell null phenotype. J Biol Chem 2001; 20;276:27281-9.10.1074/jbc.M103433200
  40. Lee S, Russo D, Redman CM. The Kell blood group system: Kell and Xk membrane proteins. Semin Hematol 2000;37:113-21.10.1016/S0037-1963(00)90036-2
  41. Russo D, Redman C, Lee S. Association of XK and Kell blood group proteins. J Biol Chem 1998;273: 13950-6.10.1074/jbc.273.22.13950
  42. Danek A, Rubio JP, Rampoldi L, et al. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol 2001;50:755-64.10.1002/ana.10035
  43. Redman CM, Russo D, Lee S. Kell, Kx and the McLeod syndrome. Baillieres Best Pract Res Clin Haematol 1999;12:621-35.10.1053/beha.1999.0045
  44. Russo D,Lee S, Redman C. Intracellular assembly of Kell and XK blood group proteins. Biochim Biophys Acta 1999;1461:10-8.10.1016/S0005-2736(99)00148-0
  45. Smith BL, Preston GM, Spring FA, et al. Human red cell aquaporin CHIP I. Molecular characterization of ABH and Colton blood group antigens. J Clin Invest 1994;94:1043-9.10.1172/JCI1174182951597521882
  46. King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nature Reviews Molecular Cell Biology 2004; 5:687-98.10.1038/nrm1469
  47. Roudier N, Ripoche P, Gane P, et al. AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J Biol Chem 2002;277:45854-9.10.1074/jbc.M208999200
  48. Roudier N, Bailly P, Gane P, et al. Erythroid expression and oligomeric state of the AQP3 protein. J Biol Chem 2002;277:7664-9.10.1074/jbc.M105411200
  49. Olives B, Neau P, Bailly P, et al. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 1994; 269:31649-52.10.1016/S0021-9258(18)31744-7
  50. Edwards-Moulds J, Kasschau MR. Methods for the detection of Jk heterozygotes: interpretations and applications. Transfusion 1988;28:545-8.10.1046/j.1537-2995.1988.28689059028.x
  51. Frohlich O,Macey RI, Edwards-Moulds J, et al. Urea transport deficiency in Jk(a–b–) erythrocytes. Am J Physiol 1991;260:C778-C783.10.1152/ajpcell.1991.260.4.C778
  52. Macey RI,Yousef LW. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol 1988;254:C669-C674.10.1152/ajpcell.1988.254.5.C669
  53. Miller LH, Mason SJ, Clyde DF,et al. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 1976; 295:302-4.10.1056/NEJM197608052950602
  54. Horuk R, Chitnis CE, Darbonne WC, et al. A receptor for the malarial parasite Plasmodium vivax: the er ythrocyte chemokine receptor. Science 1993;261:1182-4.10.1126/science.7689250
  55. Chaudhuri A, Zbrzezna V, Polyakova J, et al. Expression of the Duffy antigen in K562 cells. Evidence that it is the human er ythrocyte chemokine receptor. J Biol Chem 1994;269: 7835-8.10.1016/S0021-9258(17)37123-5
  56. Neote K,Mak JY,Kolakowski LF Jr., et al. Functional and biochemical analysis of the cloned Duffy antigen: identity with the RBC chemokine receptor. Blood 1994;84:44-52.10.1182/blood.V84.1.44.44
  57. Yamada A, Kubo K, Takeshita T, et al. Molecular cloning of a glycosylphosphatidylinositol-anchored molecule CDw108. J Immunol 1999; 162:4094-100.10.4049/jimmunol.162.7.4094
  58. Kikutani H, Kumanogoh A. Semaphorins in interactions between T cells and antigenpresenting cells. Nat Rev Immunol 2003;3:159-67.10.1038/nri1003
  59. Holmes S, Downs AM, Fosberry A, et al. Sema7A is a potent monocyte stimulator. Scand J Immunol 2002;56:270-5.10.1046/j.1365-3083.2002.01129.x
  60. Cichy J, Pure E.The liberation of CD44. J Cell Biol 2003;161:839-43.10.1083/jcb.200302098
  61. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003;4:33-45.10.1038/nrm1004
  62. Telen MJ. RBC surface adhesion molecules: their possible roles in normal human physiology and disease. Semin Hematol 2000;37:130-42.10.1016/S0037-1963(00)90038-6
  63. Spring FA, Parsons SF. Erythroid cell adhesion molecules. Transfus Med Rev 2000;14:351-63.10.1053/tmrv.2000.16231
  64. Wagner FF, Poole J, Flegel WA. Scianna antigens including Rd are expressed by ERMAP. Blood 2003;101:752-7.10.1182/blood-2002-07-2064
  65. Barclay AN. Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. Semin Immunol 2003; 15:215-23.10.1016/S1044-5323(03)00047-2
  66. Parsons SF, Spring FA, Chasis JA,et al. Erythroid cell adhesion molecules Lutheran and LW in health and disease. Baillieres Best Pract Res Clin Haematol 1999;12:729-45.10.1053/beha.1999.005010895261
  67. Udani M, Zen Q, Cottman M, et al. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin. J Clin Invest 1998;101:2550-8.10.1172/JCI12045088449616226
  68. Zen Q, Batchvarova M, Twyman CA, et al. B-CAM/LU expression and the role of B-CAM/LU activation in binding of low- and high-density red cells to laminin in sickle cell disease. Am J Hematol 2004;75:63-72.10.1002/ajh.1044214755370
  69. Lee G, Spring FA, Parsons SF, et al. Novel secreted isoform of adhesion molecule ICAM-4: potential regulator of membrane-associated ICAM-4 interactions. Blood 2003;101:1790-7.10.1182/blood-2002-08-252912406883
  70. Hermand P, Gane P, Huet M, et al. Red cell ICAM-4 is a novel ligand for platelet-activated alpha IIbbeta 3 integrin. J Biol Chem 2003;278:4892-8.10.1074/jbc.M21128220012477717
  71. Lee S, Lin M, Mele A, et al. Proteolytic processing of big endothelin-3 by the Kell blood group protein. Blood 1999;94:1440-50.10.1182/blood.V94.4.1440
  72. Vaughan JI, Manning M, Warwick RM, et al. Inhibition of erythroid progenitor cells by antiKell antibodies in fetal alloimmune anemia. N Engl J Med 1998;338:798-803.10.1056/NEJM1998031933812049504940
  73. Southcott MJ,Tanner MJ, Anstee DJ.The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood 1999;93: 4425-35.10.1182/blood.V93.12.4425
  74. Bony V, Gane P, Bailly P, et al. Time-course expression of polypeptides carrying blood group antigens during human erythroid differentiation. Br J Haematol 1999;107:263-74.10.1046/j.1365-2141.1999.01721.x10583211
  75. Yazdanbakhsh K, Lee S,Yu Q, et al. Identification of a defect in the intracellular trafficking of a Kell blood group variant. Blood 1999;94:310-8.10.1182/blood.V94.1.310.413k12_310_318
  76. Spring FA, Gardner B, Anstee DJ. Evidence that the antigens of the Yt blood group system are located on human erythrocyte acetylcholinesterase. Blood 1992;80:2136-41.10.1182/blood.V80.8.2136.2136
  77. Rao N, Whitsett CF, Oxendine SM, et al. Human erythrocyte acetylcholinesterase bears the Yta blood group antigen and is reduced or absent in the Yt(a–b–) phenotype. Blood 1993;81:815-9.10.1182/blood.V81.3.815.815
  78. Rotundo RL. Expression and localization of acetylcholinesterase at the neuromuscular junction. J Neurocytol 2003;32:743-66.10.1023/B:NEUR.0000020621.58197.d4
  79. Oxendine SM, Telen MJ, Rao N, et al. The Cartwright negative phenotype: an acquired phenomenon associated with anti-Ytab-like antibody.Transfusion 32[8S], 19S. 1992.
  80. Reid ME. The Dombrock blood group system: a review. Transfusion 2003;43:107-14.10.1046/j.1537-2995.2003.00283.x12519438
  81. Rao N, Ferguson DJ, Lee SF, et al. Identification of human erythrocyte blood group antigens on the C3b/C4b receptor. J Immunol 1991;146:3502-7.10.4049/jimmunol.146.10.3502
  82. Moulds JM, Nickells MW, Moulds JJ, et al. The C3b/C4b receptor is recognized by the Knops, McCoy, Swain-Langley, and York blood group antisera. J Exp Med 1991;173:1159-63.10.1084/jem.173.5.115921188661708809
  83. Moulds JM, Zimmerman PA, Doumbo OK, et al. Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1. Blood 2001;97: 2879-85.10.1182/blood.V97.9.287911313284
  84. Krych-Goldberg M, Atkinson JP. Structure-function relationships of complement receptor type 1. Immunol Rev 2001;180:112-22.10.1034/j.1600-065X.2001.1800110.x
  85. Cockburn IA, Mackinnon MJ, O’Donnell A, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci U S A 2004;101:272-7.10.1073/pnas.030530610131417514694201
  86. Spring FA, Judson PA, Daniels GL, et al. A human cell-surface glycoprotein that carries Cromer-related blood group antigens on erythrocytes and is also expressed on leucocytes and platelets. Immunology 1987;62:307-13.
  87. Telen MJ, Hall SE, Green AM, et al. Identification of human erythrocyte blood group antigens on decay-accelerating factor (DAF) and an erythrocyte phenotype negative for DAF. J Exp Med 1988;167:1993-8.10.1084/jem.167.6.199321896702455016
  88. Holmes CH, Simpson KL, Wainwright SD, et al. Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J Immunol 1990;144:3099-105.10.4049/jimmunol.144.8.3099
  89. Nowicki B, Hart A, Coyne KE, et al. Short consensus repeat-3 domain of recombinant decayaccelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cellcell interaction. J Exp Med 1993;178:2115-21.10.1084/jem.178.6.211521912837504058
  90. Yu CY, Belt KT, Giles CM, et al. Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J 1986;5:2873-81.10.1002/j.1460-2075.1986.tb04582.x11672372431902
  91. Blanchong CA, Chung EK, Rupert KL, et al. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol 2001;1:365-92.10.1016/S1567-5769(01)00019-4
  92. Tippett P, Storry JR,Walker PS,et al.Glycophorin A-deficient red cells may have a weak expression of C4-bound Ch and Rg antigens. Immunohematology 1996;12:4-7.10.21307/immunohematology-2019-737
  93. Colin Y. Gerbich blood groups and minor glycophorins of human erythrocytes.Transfus Clin Biol 1995;2:259-68.10.1016/S1246-7820(05)80092-8
  94. Glinsky GV, Ivanova AB, Welsh J, et al. The role of blood group antigens in malignant progression, apoptosis resistance, and metastatic behavior. Transfus Med Rev 2000;14:326-50.10.1053/tmrv.2000.1623011055077
  95. Issitt PD, Anstee DJ. Applied blood group serology. 4th ed. Miami, FL, USA: Montgomery Scientific Publications, 1998.
  96. Roitt I, Brostoff J, Male D. Immunology. 6th ed. London: Mosby, 2001.
  97. Garratty G. Blood group antigens as tumor markers, parasitic/bacterial/viral receptors, and their association with immunologically important proteins. Immunol Invest 1995;24:213-32.10.3109/088201395090627747713584
DOI: https://doi.org/10.21307/immunohematology-2019-452 | Journal eISSN: 1930-3955 | Journal ISSN: 0894-203X
Language: English
Page range: 206 - 216
Published on: May 18, 2020
Published by: American National Red Cross
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 J.R. Storry, published by American National Red Cross
This work is licensed under the Creative Commons License.